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1 Introduction

Aggregation operators play important role in many di�erent approaches to

decision making [9, 13, 17, 25]. Therefore we will investigate some of their

properties. In many systems (specially intelligent) the aggregation of incoming

data plays the main role. The aggregation operators form a fundamental part

of multi-criteria decision making, engineering design, expert systems, pattern

recognition, neural networks, fuzzy controllers, genetic algorithms.

The choice of the aggregation operator depends on the actual application.

To obtain a sensible and satisfactory aggregation, any aggregation operator

should not be used. To choose satisfactory aggregation operators, we can adopt

an axiomatic approach and impose that these operators ful�ll some selected

properties. These properties can be dictated by the nature of the values to be

aggregated, e.g., in some multi-criteria evaluation methods, the aim is to assess

a global absolute score to an alternative given a set of partial scores with respect

to di�erent criteria. It would be unnatural to give as global score a value which

is lower than the lowest partial score, or greater than the highest score, so that

only internal aggregation operators are allowed. If preference degrees coming

from transitive (in some sense) relations are combined, it is natural to require

that the result of combination remains transitive. Another example is related

to the aggregation of opinions in voting procedures. Since usually the voters

are anonymous, the aggregation operator have to be symmetric.

Decision making needs more general mathematical models, which involve

also non-additive measures. Previously used additive probability measures



could not model some situations as e.g. the Ellsberg Paradox, see [13]. For the

non-additive set function (measure) m de�ned on a �-algebra � of subsets of

a set X (for �nite X it is usually taken � = P(X); the family of all subsets),

the di�erence m(A [ B) �m(B) depends on B and can be interpreted as the

e�ect of A joining B, [13, 26, 32].

First we shall present some basic elements on the mathematical properties

of the aggregation operators from the book under preparation [14].

2 De�nition of the aggregation operator

We make a distinction between aggregation operators having one de�nite num-

ber of arguments and extended aggregation operators de�ned for all number of

arguments.

Throughout we denote by I any nonempty real interval, bounded or not.

I
Æ denotes the interior of I , that is the corresponding open interval.

Let n be any nonzero natural integer and set [n] := f1; : : : ; ng.

De�nition 1 An aggregation operator is a function A(n) : In ! R.

For instance, the arithmetic mean as an aggregation operator is de�ned by

A
(n)(x1; : : : ; xn) =

1

n

nX
i=1

xi: (1)

The integer n represents the number of values to be aggregated. When no

confusion can arise, the aggregation operators will simply be written A instead

of A(n).

A speci�c case is the aggregation of a singleton, i.e., the unary operator

A
(1) : I ! R. For many scientists the aggregation (fusion) of a singleton is not

an (true) aggregation, so they propose the convention that A(1)(x) = x (x 2

I): Unless otherwise speci�ed, we will adopt this convention throughout.

De�nition 2 An extended aggregation operator is a sequence (A(n))n>1, whose
nth element is an aggregation operator A(n) : In ! R.

For example, the arithmetic mean as an extended aggregation operator is

the sequence (A(n))n>1, where A
(n) is de�ned by (1) for all integer n > 1.

Note that, in a general extended operator, for di�erent n and m the op-

erators A(n) and A
(m) need to be related. This possible defect of extended

aggregation operators will be discussed on appropriate places in the next chap-

ters. Sometimes only partial operators A(n) will be discussed, depending on

the topic.

Of course, an extended aggregation operator is a multidimensional operator,

which can be also viewed as a mapping

A :
[
n>1

I
n ! R:



In this case we write A(n) = AjIn for all integer n > 1.

For the illustration and the next use we now give some well-known aggrega-

tion operators. In the de�nitions below, x will stand for (x1; : : : ; xn). The arith-

metic mean operator AM is de�ned by AM(x) = 1
n

P
n

i=1 xi: For any weight vec-

tor ! = (!1; : : : ; !n) 2 [0; 1]n such that
P

n

i=1 !i = 1; the weighted arithmetic
mean operatorWAM! and the ordered weighted averaging operatorOWA! asso-

ciated to !, are respectively de�ned by WAM!(x) =
P

n

i=1 !i xi; OWA!(x) =Pn

i=1 !i x(i): For any k 2 [n], the coordinate projection operator Pk and the

order statistic operator OSk associated to the kth argument, are respectively

de�ned by Pk(x) = xk ; OSk(x) = x(k): The projection of the �rst and the last

coordinates are de�ned as PF (x) = P1(x) = x1;PL(x) = Pn(x) = xn: Similarly,

the extreme order statistics x(1) and x(n) are respectively the minimum and

maximum operators Min(x) = min(x1; : : : ; xn); Max(x) = max(x1; : : : ; xn):

Also, the median of an odd number of values (x1; : : : ; x2k�1) is simply de�ned

by Med(x1; : : : ; x2k�1) = x(k): The sum and product operators are respectively

de�ned by �(x) =
P

n

i=1 xi; �(x) =
Q

n

i=1 xi: Consider the G�odel implication

IG : [0; 1]2 ! [0; 1],

IG(x; y) =

�
y; if x > y ;

1; else,

which is de�ned as a binary operator only. Note that starting from the binary

operator IG we can de�ne an extended operator in several ways. For n = 1, we

can put IG(x) = x.

Notations: For any integer k > 1 and any x 2 I , we set k � x := x; : : : ; x

(k times). For any vectors x;x0 2 I
n, we denote by xx0 the n-dimensional

vector (x1x
0
1; : : : ; xnx

0
n
) obtained by calculated the product componentwise.

The vectors x + x0, x ^ x0, and x _ x0 are de�ned similarly.For any x 2 I
n

and any function � : In ! R
n , we denote by �(x) the n-dimensional vector�

�(x1); : : : ; �(xn)
�
. If � = (�1; : : : ; �n), where �i : I ! R is any function, then

�(x) stands for
�
�1(x1); : : : ; �n(xn)

�
.For any �nite or denumerable set K, we

let �K denote the set of all permutations on K.Given a vector (x1; : : : ; xn) and

a permutation � 2 �[n], the notation [x1; : : : ; xn]� means x�(1); : : : ; x�(n), that

is, the permutation � of the indices.

3 Basic mathematical properties

In the present section we introduce basic and standard properties often required

for aggregation. For example, increasing monotonicity is an indispensable con-

dition for operators used to aggregate preferences. Idempotency is necessary

when the aggregated evaluation plays the role of a typical value, etc.

3.1 Symmetry

The �rst property we consider is symmetry , also called commutativity, neutral-

ity, or anonymity. The standard commutativity of binary operators x�y = y�x,



well known in Algebra, can be easily generalized for n-ary aggregation opera-

tors, with n > 2, as follows.

De�nition 3 A : In ! R is a symmetric operator if

A(x) = A([x]�) (x 2 I
n
; � 2 �[n]):

The symmetry property essentially means that the aggregated value does

not depend on the order of the arguments. This is required when combining

criteria of equal importance or anonymous expert's opinions, e.g., symmetry is

more natural in voting procedures than in multicriteria decision making, where

criteria usually have di�erent importances.

Many aggregation operators introduced till now are symmetric. For exam-

ple, AM, GM, OWA! are symmetric operators. Prominent examples of non-

symmetric aggregation operators are weighted arithmetic means WAM!.

The following result, well-known in group theory, shows that the symmetry

property can be checked with only two equalities.

Proposition 4 A : In ! R is a symmetric operator if and only if, for all
x 2 I

n, we have
i) A(x2; x1; x3; : : : ; xn) = A(x1; x2; x3; : : : ; xn),
ii) A(x2; x3; : : : ; xn; x1) = A(x1; x2; x3; : : : ; xn).

In situations when judges, criteria, or individual opinions are not equally

important, the symmetry property must be omitted. There are some at-

tempts how to incorporate weights into symmetric operators. Conversely, a

nonsymmetric operator A(x) can always be symmetrized by replacing it with

A(x(1); : : : ; x(n)). Thus, according to this process a weighted arithmetic mean

WAM! gives rise to the corresponding ordered averaging operator OWA!.

3.2 Continuity

We now consider the classical property of continuity.

De�nition 5 A : In ! R is a continuous operator if it is a continuous function
in the usual sense.

The continuity property is required when we want the operator to present

no chaotic reaction to any small change of the arguments. For example, when

the inputs represent approximate readings we expect that the presence of any

small error does not cause a big error in the output.

For nondecreasing operators, continuity is equivalent to the following inter-

mediate value property.

De�nition 6 A nondecreasing operator A : In ! R has the intermediate value

property if, for all x;y 2 I
n such that x 6 y and all c 2 [A(x);A(y)], there is

z 2 I
n, with x 6 z 6 y, such that A(z) = c.



An important analytical property of functions of n variables allowing us

to estimate the error when dealing with imprecise input data is the classical

Lipschitz property. Recall that an aggregation operator A : In ! R ful�lls the

Lipschitz property with constant c 2 ]0;1[ (A is c-Lipschitz for short) if, for

any x;y 2 I
n, we have

jA(x) � A(y)j 6 c

nX
i=1

jxi � yij:

Clearly, the Lipschitz property (with arbitrary c) ensures continuity but not

vice-versa.

Within the already introduced aggregation operators, the operator IG is an

example non-continuous operator. Operators AM, �, Min, Max, PF , PL are

continuous aggregation operators which all also ful�ll the Lipschitz property.

As an example of a continuous aggregation operator which is not Lipschitz for

any c 2 ]0;1[, we recall the geometric mean GM,

GM(x) =
� nY
i=1

xi

�1=n
:

There are many important aggregation operators related to the Lipschitz

property, see [14]. There also some other types of continuity as lower semi-

continuouty upper semi-continuouty.

3.3 Monotonicity

Let us consider the following monotonicity properties: nondecreasing mono-

tonicity, strict increasing monotonicity, and unanimous increasing monotonic-

ity.

De�nition 7 The operator A : In ! R is nondecreasing (in each argument)
if, for any x;x0 2 I

n,

xi 6 x
0

i
8i 2 [n] ) A(x) 6 A(x0):

Note also that among the operators we have already discussed, the G�odel

implication IG is a binary operator that is not nondecreasing in both arguments.

In fact, it is nondecreasing in the second argument and nonincreasing in the

�rst argument.

De�nition 8 The operator A : In ! R is strictly increasing (in each argu-
ment) if, for any x;x0 2 I

n,

xi 6 x
0

i
8i 2 [n] and x 6= x0 ) A(x) < A(x0):



A nondecreasing aggregation operator presents a nonnegative response to

any increase of the arguments. In other terms, increasing any input value can-

not decrease the output value. This operator is strictly increasing if, moreover,

it presents a positive reaction to any increase of at least one input value.

Note that strict monotonicity implies nondecreasing monotonicity trivially.

It also implies cancellativity, which means that if A(x) = A(x0) and xi = x
0
i
for

all [n]nfi0g, then xi0 = x
0
i0
. The converse is not true, unless A is nondecreasing.

Evidently, all these forms of monotonicity are related to the Cartesian par-

tial order, when two input systems (x1; : : : ; xn) and (x01; : : : ; x
0
m) are compara-

ble, that is, only if n = m and xi 6 x
0
i
for all i 2 [n] (or xi > x

0
i
). There are

alternative approaches to the monotonicity of aggregation operators, and then

the corresponding aggregation operators.

3.4 Idempotency

In Algebra, we say that x is an idempotent element with respect to a binary

operation � if x � x = x. This algebraic property can be extended to n-ary

operators, thus de�ning the idempotency property for aggregation operators.

Also called unanimity, agreement, or re
exivity, this property means that if all

xi are identical, A(x1; : : : ; xn) restitutes the common value.

De�nition 9 A : In ! R is an idempotent operator if

A(n � x) = x (x 2 I):

Idempotency is in some areas supposed to be a genuine property of aggrega-

tion operators, e.g., in multi-criteria decision making [9], where it is commonly

accepted that if all criteria are satis�ed at the same degree x then also the

global score should be x.

Now, it is evident that AM, WAM!, OWA!, Min, Max, and Med are idem-

potent operators, while � and � are not.

De�nition 10 An element x 2 I is an idempotent for A : In ! R if A(n�x) =

x.

In [0; 1]n the product � has no other idempotent elements than the extreme

elements 0 and 1. As an example of an operator in [0; 1]n which is not idem-

potent but has a non-extreme idempotent element, take an arbitrarily chosen

element c 2 ]0; 1[ and de�ne the aggregation operator Afcg : [0; 1]
n ! [0; 1] as

follows:

Afcg(x1; : : : ; xn) = max
�
0;min

�
1; c+

nX
i=1

(xi � c)
��

:

By means of a straightforward computation it is easy to see that the only

idempotent elements for Afcg are 0, 1, and c.

An operator A : In ! I such that any x 2 ran(A) is idempotent for A

will be called range-idempotent. This property will be useful when we will

introduce the decomposability property.



De�nition 11 A : In ! I is a range-idempotent operator if

A
�
n � A(x1; : : : ; xn)

�
= A(x1; : : : ; xn) (x 2 I

n):

4 Location in the real line

Very often, aggregation operators are divided into three classes, each possess-

ing very distinct behavior: conjunctive operators, disjunctive operators and

internal operators.

De�nition 12 A : In ! R is conjunctive if

A(x) 6 minxi (x 2 I
n):

Conjunctive operators combine values as if they were related by a logical

\and" operator. That is, the result of combination can be high only if all the

values are high. t-norms are suitable functions (de�ned on [0; 1]n) for doing

conjunctive aggregation. However, they generally do not satisfy properties

which are often requested for multicriteria aggregation, such as idempotence,

scale invariance, etc.

De�nition 13 A : In ! R is disjunctive if

A(x) > maxxi (x 2 I
n):

Disjunctive operators combine values as an \or" operator, so that the re-

sult of combination is high if at least one value is high. Such operators are, in

this sense, dual of conjunctive operators. The most common disjunctive oper-

ators are t-conorms (de�ned on [0; 1]n). As t-norms, t-conorms do not possess

suitable properties for criteria aggregation.

De�nition 14 A : In ! R is internal if

minxi 6 A(x) 6 maxxi (x 2 I
n):

Between conjunctive and disjunctive operators, there is room for a third

category, namely internal operators. They are located between min and max,

which are the bounds of the t-norm and t-conorm families.

The most often encountered functions in the literature on aggregation are

means or averaging functions, such as the weighted arithmetic means. Cauchy

considered themean of n independent variables x1; : : : ; xn as a function A(x1; : : : ; xn)

which should be internal to the set of xi values. Thus, according to Cauchy, a

mean is merely an internal operator.

In multicriteria decision aid, these operators are also called compensative

operators. In fact, in this kind of operators, a bad (resp. good) score on one

criterion can be compensated by a good (resp. bad) one on another criterion,

so that the result of the aggregation will be medium.



5 Cluster based properties

The properties we will focus on in this section concern the \clustering" charac-

ter of the aggregation operators. That is to say, we assume that it is possible

to partition the set of the arguments into disjoint subgroups, build the partial

aggregation for each subgroup and then combine these partial results to get

the global value. This condition may take several forms. The strongest one we

will present is associativity. Other weaker formulations will also be presented,

namely decomposability, autodistributivity, bisymmetry, self-identity.

5.1 Associativity

We consider �rst the associativity functional equation. Associativity of a binary

operation � means that (x � y) � z = x � (y � z), so we can write x � y �

z unambiguously. If we write this binary operation as a two-place function

f(a; b) = a � b, then associativity says that f(f(a; b); c) = f(a; f(b; c)). For

general f , this is the associativity functional equation.

De�nition 15 A : I2 ! I is associative if, for all x 2 I
3, we have

A
�
A(x1; x2); x3

�
= A

�
x1;A(x2; x3)

�
: (2)

A large number of papers deal with the associativity functional equation

(2) even in the �eld of real numbers. In complete generality its investigation

naturally constitutes a principal subject of algebra.

Basically, associativity concerns aggregation of only two arguments. How-

ever, it can be extended to any �nite number of arguments as follows.

De�nition 16 A : [n>1I
n ! I is associative if A(x) = x for all x 2 I and if

A(x1; : : : ; xk; xk+1; : : : ; xn) = A
�
A(x1; : : : ; xk);A(xk+1; : : : ; xn)

�
(3)

for all integers 0 6 k 6 n, with n > 1, and all x 2 I
n.

For practical purposes we can start with the aggregation procedure before

knowing all inputs to be aggregated. New (additional) input data are then

simply aggregated with the current aggregated output.

As examples of associative operators recall Min, Max, �, �, PF , PL. Oper-

ators like AM and GM are not associative.

In fact, associativity is a very strong and rather restrictive property, es-

pecially together with continuity. Therefore sometimes some modi�cations of

associativity preserving its advantages (from the computational point of view)

and extending the freedom in the choice of A(n), n > 2, are introduced. If two

(or another number) associative operators B, C and functions f , g, h are given

such that A = f(B Æ g;C Æ h), i.e.,

A(x1; : : : ; xn) = f
�
B(g(x1); : : : ; g(xn));C(h(x1); : : : ; h(xn))

�
;

then A is called a quasi-associative operator.



5.2 Decomposability

It can be easily veri�ed that the arithmetic mean as an extended operator

does not solve the associativity equation (2). So, it seems interesting to know

whether there exists a functional equation, similar to associativity, which can

be solved by the arithmetic mean, or even by other means such as the geometric

mean, the quadratic mean, etc.

On this subject, an acceptable equation, called associativity of means, has

been proposed for symmetric extended operators and can be formulated as

follows

A(x1; : : : ; xk ; xk+1; : : : ; xn) = A
�
k � A(x1; : : : ; xk); xk+1; : : : ; xn

�

for all integers 0 6 k 6 n, with n > 1.

When symmetry is not assumed, it is necessary to rewrite this property in

such a way that the �rst variables are not privileged. We then consider the

following de�nition.

De�nition 17 A : [n>1I
n ! I is decomposable if A(x) = x for all x 2 I and

if

A(x1; : : : ; xk; xk+1; : : : ; xn) = A
�
k � A(x1; : : : ; xk); (n� k) � A(xk+1; : : : ; xn)

�

for all integers 0 6 k 6 n, with n > 1, and all x 2 I
n.

By considering k = 0 (or k = n), we see that any decomposable operator

is range-idempotent. It follows that decomposability means that each element

of any subset of consecutive elements from x 2 I
n can be replaced with their

partial aggregation without changing the global aggregation.

Decomposability also implies that the global aggregation does not change

when altering some consecutive values without modifying their partial aggre-

gation. For example,

A(x2; x3) = A(x02; x
0

3) ) A(x1; x2; x3; x4; x5) = A(x1; x
0

2; x
0

3; x4; x5):

It is easy to see that, under range-idempotency, this latter property implies

decomposability.

5.3 Bisymmetry and related properties

Let us consider the bisymmetry property, also called mediality.

De�nition 18 A : I2 ! I is bisymmetric if for all x 2 I
4, we have

A
�
A(x1; x2);A(x3; x4)

�
= A

�
A(x1; x3);A(x2; x4)

�
:



The bisymmetry property is very easy to handle and has been investigated

from the algebraic point of view by using it mostly in structures without the

property of associativity | in a certain respect, it has been used as a substitute

for associativity and also for symmetry.

For n arguments, bisymmetry takes the following form.

De�nition 19 A : In ! I is bisymmetric if

A
�
A(x11; : : : ; x1n); : : : ;A(xn1; : : : ; xnn)

�
= A

�
A(x11; : : : ; xn1); : : : ;A(x1n; : : : ; xnn)

�

for all square matrices

X =

0
B@
x11 � � � x1n

...
...

xn1 � � � xnn

1
CA 2 I

n�n
:

Bisymmetry expresses that aggregation of all the elements of any square

matrix can be performed �rst on the rows, then on the columns, or conversely.

There are further extensions of such type of operators.

5.4 Self-identity

De�nition 20 A : [n>1I
n ! I is a self-identity extended aggregation operator

if A(x) = x for all x 2 I, and A
�
x1; : : : ; xn;A(x1; : : : ; xn)

�
= A(x1; : : : ; xn) for

all integer n > 1 and all x 2 I
n.

Thus we see that, in the case of self-identity extended operators, adding an

element equal to the already established value does not change the aggregation

value. This property generalizes the next well known feature of the arithmetic

mean. If a sample of inputs x1; : : : ; xn is given and �x is the corresponding

arithmetic mean, then adding new additional inputs all equal to �x will not

in
uence the �nal arithmetic mean.

In this de�nition, the last argument is privileged. This can make sense in

some situations, even when symmetry is not assumed. For instance, consider

a situation in which the arguments are temporal in nature, in this case xi

indicates the ith observed reading. In situations in which we feel that the basic

underlying process generating the readings is changing we may desire to give

more emphasis to the later readings rather than to the former ones.

5.5 Invariance properties

Depending on the kind of scale which is used, allowed operations on values

are restricted. For example, aggregation on ordinal scales should be limited

to operations involving comparisons only, such as medians and order statistics,

while linear operations are allowed on interval scales.



To be precise, a scale of measurement is a mapping that assigns real num-

bers to objects being measured. Stevens de�ned the scale type of a scale by

giving a class of admissible transformations, transformations that lead from

one acceptable scale to another.

6 Further properties

Some other speci�c properties of aggregation operators, not mentioned in pre-

vious sections, have been investigated in the area of aggregation operators. We

brie
y recall some of them.

The neutral element is again a well-known notion coming from the area of

binary operations. This idea is the background of the general de�nition.

De�nition 21 Let A : [n>1I
n ! I be an aggregation operator. An element

e 2 I is called a neutral element of A if, for any i 2 [n] and any x 2 I
n such

that xi = e, then

A(x1; : : : ; xn) = A(x1; : : : ; xi�1; xi+1; : : : ; xn):

So the neutral element can be omitted from aggregation inputs without

in
uencing the �nal output. In multi-criteria decision making, assigning a

score equal to the neutral element (if it exists) to some criterion means that

only the other criteria ful�llments are decisive for the global evaluation.

De�nition 22 A : In ! R is additive if

A(x + x0) = A(x) + A(x0)

for all x;x0 2 I
n such that x+ x0 2 I

n.

De�nition 23 A : In ! R is minitive if

A(x ^ x0) = A(x) ^ A(x0)

for all x;x0 2 I
n.

De�nition 24 A : In ! R is maxitive if

A(x _ x0) = A(x) _ A(x0)

for all x;x0 2 I
n.

We now present the concept of comonotonicity. In the context we are

interested in it is de�ned as follows.

De�nition 25 Two vectors x;x0 2 E
n are said to be comonotonic if there

exists a permutation � 2 �[n] such that

x�(1) � � � � � x�(n) and x
0

�(1) � � � � � x
0

�(n):



Thus � orders the components of x and x0 simultaneously. Another way

to say that x and x0 are comonotonic is that (xi � xj)(x
0
i
� x

0
j
) � 0 for every

i; j 2 [n]. Thus if xi < xj for some i; j then x
0
i
� x

0
j
.

De�nition 26 A : In ! R is comonotonic additive if

A(x + x0) = A(x) + A(x0)

for all comonotonic vectors x;x0 2 I
n such that x+ x0 2 I

n.

7 Compensatory operators and aggregation op-

erators based on integrals

From the application point of view, there exist suggestions to use the special

aggregation operators, so-called compensatory operators in order to model in-

tersection and union in many-valued logic. The main goal of compensatory

operators is to model an aggregation of incoming values. If two values are

aggregated by a t-norm then there is no compensation between low and high

values. On the other hand, a t-conorm based aggregation provides the full com-

pensation. None of the above cases covers the real decision making. To avoid

such inaccuracies, [33] suggested two kinds of so-called compensatory operators.

The �rst of them was 
-operator, �
 : [n2N[0; 1]
n ! [0; 1]; 
 2 [0; 1]; n � 2

�
(x1; : : : ; xn) = (

nY
i=1

xi)
1�
(1�

nY
i=1

(1� xi))


:

Here parameter 
 indicates the degree of compensation. Note that 
-operators

are a special class of exponential compensatory operators [17]. For a given

t-norm T; t-conorm S (not necessarily dual to T ) and parameter 
 indicating

the degree of compensation, the exponential compensatory operator ET;S;
 :

[0; 1]n ! [0; 1]; n � 2; is de�ned by

ET;S;
(x1; : : : ; xn) = (T (x1; : : : ; xn))
1�
(S(x1; : : : ; xn))



:

It is obvious that 
-operator is based an TP SP; �
 = ETP;SP;
 . Further note

that ET;S;
 is a logarithmic convex combination of T and S and up to the case

when 
 2 f0; 1g it is non-associative.Another class of compensatory operators

proposed in [33] are so-called convex-linear compensatory operators.

We have proposed an associative class of compensatory operators in [16].

The degree of compensation is ruled by two parameters, namely by the neutral

element e and the compensation factor k. Let T be a given strict t-norm with

additive generator t; t( 12 ) = 1; and let S be a given strict t-conorm with an

additive generator s; s( 12 ) = 1. For a given e 2 ]0; 1[ ; k 2 ]0;+1[ ; we de�ne

an associative compensatory operator

C(T; S; e; k) = C : [0; 1]2 n f(0; 1); (1; 0)g ! [0; 1]



by

C(x; y) = h
�1(h(x) + h(y));

where h : [0; 1]! [�1;+1] is a strictly increasing bijection such that

h(x) =

�
kt(x

e
) if x 2 [0; e]

s(x�e1�e ) if x 2]e; 1]:

Note that on the square [0; e]2; C coincides with the t-norm Te = (< 0; e; T >)

(the ordinal sum, see [17]). On the square [e; 1]2; C coincide with the t-conorm

Se = (< e; 1; S >). On the remainder of its domain, it is TM < C < SM; and

note that small values of parameter k increase the values of C (limitedly to

SM) while the large values of k decrease the values of C (limitedly to TM).

These type of compensatory operators are special type of uni-norms.

The basic idea of any integral is to aggregate the values of some function

on a given universe (inputs) into a single value (output). The correspondence

between the special aggregation operators and the special types of integrals

was studied, e.g., in [11, 13, 6, 9].

Let (mn)n2N be a system of fuzzy measures mn : P(Xn) ! [0; 1]; Xn =

f1; � � � ; ng;mn(Xn) = 1: Then the operator A : [n2N[0; 1]
n ! [0; 1]; de�ned by

A(x1; : : : ; xn) = (C)

Z
Xn

fdmn;

where the right-hand side is a Choquet integral of the function f : Xn !

[0; 1]; f(i) = xi; i = 1; � � � ; n; with respect to the fuzzy measure mn; is an

aggregation operator.

The class of the Choquet integral based aggregation operators corresponds

to the idempotent operators stable under increasing linear transformations on

the unit interval, which are commonotone additive, i.e., A = '(A(x1; : : : ; xn))

whenever ' : [0; 1]! [0; 1]; '(x) = ax+ b; a > 0; and

A(x1 + y1; : : : ; xn + yn) = A(x1; : : : ; xn) + A(y1; : : : ; yn)

whenever (xi � xj)(yi � yj) � 0 for all i; j 2 Xn: Each Choquet integral based

aggregation operator A is continuous. The commutativity of A depends on

the properties of the underlying fuzzy measures and it is equivalent with the

property that mn(B) depends only on n and the cardinality of B:

There is need for the investigation of the relation of the aggregation opera-

tors with di�erent types of non-additive (fuzzy) integrals. Further investigation

on application of the non-additive integrals (Sugeno, Choquet and their gener-

alizations) in the decision (subjective, multi{criteria) theory as an aggregation

operator. These integrals have the advantage with respect to other aggrega-

tion operators that the non{additivity of the considered measures takes into

account the interaction between criteria. For wider applications the identi�ca-

tion of the non-additive measure is crucial. At this moment there are many



di�erent approaches by statistics, neural networks, genetics algorithms, combi-

natorial optimization, etc.

There is a mathematical background, which we shall call pseudo{analysis,

for treating problems with uncertainty, nonlinearity and optimization in math-

ematics and soft computing. Namely, instead of the usual plus and/or product

structure of real numbers, other operations (pseudo-operations) on extended

reals are considered. Certain parts of such mathematical analysis have been

developed in analogy with the classical mathematical analysis as for example

measure theory, integration, integral operators, convolution, Laplace transform,

see books [17, 26, 27].
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