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1 Introduction

The notion of a probabilistic space is introduced in 1942 by K. Menger. The

�rst idea of K. Menger was to use distribution function instead of nonnegative

real numbers as values of the metric. Since then the theory of probabilistic

metric spaces has been developed in many directions [5]. Some �xed point re-

sults for single-valued and multi-valued mappings in probabilistic metric spaces

can be found in [4], [7].

One of the most important results for the �xed point theory in metric space

(M; d) is the Banach contraction principle.

A mapping f :M !M is said to be a q-contraction if there exists q 2 [0; 1)

such that

d(fx; fy) � qd(x; y)

for every x; y 2M .

Every q-contraction f : M ! M on a complete metric space (M; d) has

one and only one �xed point.

Sehgal and Bharucha-Reid introduced in [6] the notion of a probabilistic

q-contraction (q 2 (0; 1)) in probabilistic metric space.

De�nition 1 Let (S; F) be a probabilistic metric space. A mapping f : S ! S

is a probabilistic q-contraction if



Ffp1;fp2(x) � Fp1;p2(
x

q
)

for every p1; p2 2 S and every x 2 R:

The �rst �xed-point theorem in probabilistic metric space was proved by Sehgal

and Bharucha-Reid in [6].

Theorem 2 Let (S; F ; TM ) be a complete Menger space and f : S ! S a

probabilistic q-contraction. Then there exists a unique �xed point x of the

mapping f and x = lim
n!1

fnp for every p 2 S.

Banach's contraction principle in metric spaces is a consequence of the well

known Caristi �xed point theorem [1], which is one of the most important

results in �xed point theory and nonlinear analysis.

Theorem 3 (Caristi) Let (M; d) be a complete metric space and � :M ! R

a lower semi-continuous function with a �nite lower bound. Let f : M ! M

be any (not necessarily continuous) function such that

d(x; f(x)) � �(x) � �(f(x)) for every x 2M: (1)

Then f has a �xed point.

Suppose that f : M ! M is a q-contraction on M . Then d(fx; f2x) �

qd(x; fx) for every x 2M and so

d(x; fx)� qd(x; fx) � d(x; fx)� d(fx; f2x)

for every x 2M , which implies that

d(x; fx) �
1

1� q
d(x; fx)�

1

1� q
d(fx; f2x):

This means that for �(x) = 1
1�q

d(x; fx) the inequality (1) is satis�ed.

In this paper we have proved some �xed point theorem of Caristi's type in

Menger space.

2 Preliminaries

LetD+ be the set of all distribution functions F such that F (0) = 0 (F is a non-

decreasing, left continuous mapping from R into [0; 1] such that sup
x2R

F (x) = 1):



De�nition 4 [5] The ordered pair (S;F) is said to be a probabilistic metric

space if S is a nonempty set and F : S � S ! D+ so that the following condi-

tions are satis�ed (where F(p; q) is written by Fp;q for every (p; q) 2 S � S):

1. Fp;q(x) = 1 for every x > 0, p = q (p; q 2 S):

2. Fp;q = Fq;p for every p; q 2 S:

3. Fp;q(x) = 1 and Fq;r(y) = 1 ) Fp;r(x + y) = 1 for p; q; r 2 S and

x; y 2 R+ :

De�nition 5 [5] Recall that a mapping T : [0; 1] � [0; 1] ! [0; 1] is called a

triangular norm (a t-norm) if the following conditions are satis�ed:

T (a; 1) = a for every a 2 [0; 1] ; T (a; b) = T (b; a) for every a; b 2 [0; 1];

a � b; c � d) T (a; c) � T (b; d) (a; b; c; d 2 [0; 1]);

T (a; T (b; c)) = T (T (a; b); c) (a; b; c 2 [0; 1]):

Example 6 The following are the four basic t-norms :

(i) The minimum t-norm TM is de�ned by

TM (x; y) = min(x; y);

(ii) The product t-norm TP is de�ned by

TP (x; y) = x � y;

(iii) The Lukasiewicz t-norm TL is de�ned by

TL(x; y) = max(x+ y � 1; 0);

(iv) The weakest t-norm, the drastic product TD; is de�ned by

TD(x; y) =

�
min(x; y) if max(x; y) = 1;

0 otherwise.

De�nition 7 [5] A Menger space is an ordered triple (S;F ; T ); where (S;F)

is a probabilistic metric space, T is a t -norm and the generalized triangle

inequality

Fp;q(x+ y) � T (Fp;r(x); Fq;r(y))

holds for every p; q; r 2 S and every x > 0; y > 0:

In [2] a class of t-norms is introduced, which is useful in the �xed point

theory in probabilistic metric spaces.



Let T be a t-norm and Tn : [0; 1]! [0; 1] (n 2 N) be de�ned in the follow-

ing way:

T1(x) = T (x; x); Tn+1(x) = T (Tn(x); x) (n 2 N; x 2 [0; 1]):

We say that t-norm T is of H-type if the family fTn(x)gn2N is equicontin-

uous at x = 1.

Each t-norm T can be extended (by the associativity) in a unique way to an

n-ary operation taking for (x1; : : : ; xn) 2 [0; 1]n the values T (x1; x2; : : : ; xn),

which is de�ned by

T
0

i=1xi = 1; T
n

i=1xi = T (T
n�1

i=1 xi; xn):

A t-norm T can be extended to a countable in�nitary operation taking for

any sequence (xn)n2N from [0; 1] the value

T
1

i=1xi = lim
n!1

T
n

i=1xi:

The sequence (Tn
i=1xi)n2N is non-increasing and bounded from below, hence

the limit T1i=1xi exists.

The (�; �)� topology in S is introduced by the family of neighbourhood of

v 2 S Uv = fUv(�; �)g�;�)2R+�(0;1), where

Uv(�; �) = fu; Fu;v(�) > 1� �g:

If a t-norm T is such that sup
x<1

T (x; x) = 1; then fUvgv2S de�nes on S a metriz-

able topology.

Let (S; F) be a probabilistic metric space. A sequence fxngn2N in S is

a Cauchy sequence if and only if for every " > 0 and � 2 (0; 1) there exists

n0("; �) 2 N such that

Fxn+p;xn(") > 1� �; for every n � n0("; �) end every p 2 N:

If a probabilistic metric space (S; F) is such that every Cauchy sequence

fxngn2N in S converges in S, then (S; F) is a complete space.

3 A �xed point theorem

In [4] the following theorem is proved:



Theorem 8 Let T be a t-norm. Then (i) and (ii) hold, where:

(i)Suppose that there exists a strictly increasing sequence (bn)n2N from the

interval [0; 1) such that lim
n!1

bn = 1 and T (bn; bn) = bn. Then t-norm T is of

H-type.

(ii) If t-norm T is continuous and of H-type, then there exists a sequence

(bn)n2N as in (i).

A theorem which we have proved is a generalization of a theorem given in [3].

Theorem 9 Let (S; F ; T ) be a complete Menger space such that t-norm T is

continuous and of H-type, f : S ! S a continuous mapping, �n : S ! R
+

(n 2 N), and � a mapping of R+ onto R+ , such that � is non-decreasing and

�(a+ b) � �(a) + �(b)

for every a; b 2 R+ . If for every x 2 S, every s > 0 and every n 2 N

�(s) > �n(x)��n(f(x))) Fx;f(x)(s) > bn

where (bn)n2N is a monotone increasing sequence from (0; 1) such that

lim
n!1

bn = 1 and T (bn; bn) = bn for every n 2 N. Then there exists a a �xed

point x� 2 S of the mapping f and x� = lim
n!1

fn(x0) for arbitrary x0 2 S.

In the next theorem (bn)n2N is monotone increasing sequence from (0; 1)

such that lim
n!1

bn = 1 but the members of sequence (bn)n2N are not idempotent

elements of the mapping T in a general case.

Theorem 10 Let (S; F ; T ) be a complete Menger space such that t-norm T

is of H-type, f : S ! S a continuous mapping, �n : S ! R
+ (n 2 N), and � a

mapping of R+ onto R+ , such that � is non-decreasing and

�(a+ b) � �(a) + �(b)

for every a; b 2 R+ . If for every x 2 S, every s > 0 and every n 2 N

�(s) > �n(x)��n(f(x))) Fx;f(x)(s) > bn (2)

then there exists an x� 2 S such that x� = f(x�) and x� = lim
n!1

fn(x0); for

arbitrary x0 2 S.

Proof: We shall prove that (2) implies

�[dn(x; f(x))] � �n(x) ��n(f(x)); (3)



for every n 2 N and every x 2 S, where dn is de�ned by

dn(x; y) = supfu ju 2 R; Fx;y(u) � bng: (4)

In order to prove (3) we shall prove the following implication:

s > �n(x)��n(f(x)) ) �[dn(x; f(x))] � s: (5)

Let s > �n(x) � �n(f(x)). Since � maps R+ onto R+ , there exists s1 > 0

such that

�(s1) = s > �n(x) ��n(f(x)):

As from (2) it follows that Fx;fx(s1) > bn, we obtain that dn(x; f(x)) < s1
and therefore

�[dn(x; f(x))] � �(s1) = s:

Therefore (5) holds.

Since t-norm T is of H-type it follows that for every � 2 (0; 1), there exists

� 2 (0; 1) such that

T (T (: : : T| {z }
n�time

(1� �; 1� �); : : : ; 1� �) > 1� �;

for every n 2 N: Let 1 � � = bn where n 2 N: Then there exists s(n) 2 N

such that 1� � � bs(n), so

T (T (: : : T| {z }
n�time

(bs(n); bs(n)); : : : ; bs(n)) > bn; for every n 2 N: We shall

prove that for every �nal set fv1; v2; : : : vmg � S, is

dn(v1; vm) �

m�1X
i=1

ds(n)(vi; vi+1): (6)

Let u1; u2; : : : um�1 2 R be such that

ds(n)(v1; v2) < u1

ds(n)(v2; v3) < u2

: : :

ds(n)(vm�1; vm) < um�1:



Then from the de�nition (4) we have

Fv1;v2(u1) > bs(n)

Fv2;v3(u2) > bs(n)

: : :

Fvm�1;vm(um�1) > bs(n);

i.e. Fv1;vm(u1 + u2 + : : : um) � Tm
i=1bs(n) > bn, i.e. dn(v1; vm) � u1 + u2 +

� � �+ um. So (6) is valid.

Let x0 2 S and xm = fm(x0) (m 2 N). Then for every (m 2 N)

�[dn(xm+1; xm)] = �[dn(f(xm); xm)]

� �n(xm)��n(f(xm));

and so for every k 2 N

kX
i=0

�[dn(xi+1; xi)] � �n(x0)��n(xk+1)

� �n(x0):

Since � is sub-additive it follows that

�[

kX
i=0

dn(xi+1; xi)] � �n(x0): (7)

Relation (7)implies that

kX
i=0

dn(xi+1; xi) � supfu ju > 0; �(u) = �n(x0)g =Mn;

and so the series

1X
i=0

dn(xi+1; xi) (8)

is convergent.

Condition (8) is valid for every n 2 N so it is satis�ed for s(n) and

dn(xm; xm+p) �

m+p�1X
i=m

ds(n)(xi; xi+1)

�

1X
i=m

ds(n)(xi; xi+1):



From the condition (6) it follows that (xn)n2N is Cauchy sequence. If x� =

lim
n!1

xn = lim
n!1

fn(x0), then from the continuity of f it follows that x� = f(x�).
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