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Abstract. In crisp approximation theory the operations that are used are only the

usual sum and product of reals. We propose the following problem: are sum and

product the only operations that can be used in approximation theory? As an answer

to this problem we propose max-product Shepard Approximation operators and we

prove that these operators have very similar properties to those provided by the crisp

approximation theory. In this sense we obtain uniform approximation theorem of

Weierstrass type, and Jackson-type error estimate in approximation by these operators.

1 Introduction

The main problem solved in crisp approximation theory is to approximate a

function f : [a, b] → R, where [a, b] is a real interval, by some simpler function,
e.g. (trigonometric) polynomial, rational function or wavelet. Crisp approxima-
tion theory provides many different approximation operators: Bernstein polyno-
mials, Shepard-type rational approximation operators, trigonometric polynomi-
als of Fejér type, wavelets, (see e.g. [3]) to mention only a few. These operators
are using exclusively sum and product of reals as operations, and so, the linear
algebra as underlying algebraic structure. Usually, the form of such an operator
is

L(f, x) =
n∑

i=0

ln,i(x) · f(xi),



where xi ∈ [a, b] are the knots, i = 0, ..., n, and ln,i(x) are functions having
relatively simple expression (polynomials, trigonometric polynomials, rational
functions, wavelets). The main theorems in crisp approximation theory are
the Weierstrass-type uniform approximation theorems, which state that any
continuous function can be approximated uniformly by operators of a given
type, and error estimates which usually are given in terms of the modulus of
continuity. Let us remark also that the approximation operators provided by
crisp approximation theory are all linear.

Max t-norm compositions play a very important role in fuzzy logic and
they were extensively studied, mainly in view of fuzzy relational equations (see
e.g. [4]). Also, their applications to fuzzy control are well known (see [8]). The
approximation capabilities of fuzzy systems (i.e. the capability of a fuzzy system
to approximate some target function) are also well known ([6], [11], [5], [1], [7]).

These ideas lead us to propose the following question: Are sum and product
the only operations that can be used in approximation theory? The answer is
surely negative and in this sense we present max-product Shepard approxima-
tion operators, which use max instead of sum. For these operators we obtain
Weierstrass-type uniform approximation theorem and for the approximation
error we obtain Jackson-type error estimates in terms of the modulus of conti-
nuity. Since the operations used in the construction of these operators are max
and product, the underlying algebraic structure is a max-product algebra and
the mathematical analysis on these structures (i.e. the metric space structure)
is usually called pseudo-analysis ([9]). Let us remark that these aproximation
operators are nonlinear in contrast with the operators provided by crisp approx-
imation theory.

After a preliminary section we introduce in Section 3 the max-product ap-
proximation operators and we study approximation properties of these opera-
tors. Some conclusions and further research topics conclude the paper.

2 Preliminaries

The purpose of this paper is to approximate a target function f : X → [0,∞],
where (X, d) is an arbitrary compact metric space, [0,∞] is endowed with max
and product as algebraic operations and the usual topology induced by the
Euclidean distance over the reals. So, the algebraic structure over [0,∞] is the
max-product algebra. If we endow the max-product algebra with the topological
structure induced by the Euclidean distance, we can use the tools of mathemati-
cal analysis. The mathematical analysis over this algebraic-topological structure
is called pseudoanalysis (see [9]). The target function f : X → [0,∞] is assumed
to be continuous.

Usually, the error estimates in crisp approximation theory are provided in
terms of the modulus of continuity. So, let us recall it’s definition and main
properties adapted to our case (for the general definition see [2]).

Definition 1 Let (X, d) be a metric spaces and ([0,∞], | · |) the metric space of
positive reals endowed with the usual Euclidean distance. Let f : X → [0,∞] be



a function. Then the function ω (f, ·) : [0,∞) → [0,∞), defined by

ω (f, δ) =
∨
{|f (x)− f (y) |; x, y ∈ X, d(x, y) ≤ δ}

is called the modulus of continuity of f.

Theorem 2 The following properties hold true
i) |f (x)− f (y) | ≤ ω (f, d(x, y)) for any x, y ∈ X;
ii) ω (f, δ) is nondecreasing in δ;
iii) ω (f, 0) = 0;
iv) ω (f, δ1 + δ2) ≤ ω (f, δ1) + ω (f, δ2) for any δ1, δ2,∈ [0,∞);
v) ω (f, nδ) ≤ nω (f, δ) for any δ ∈ [0,∞) and n ∈ N;
vi) ω (f, λδ) ≤ (λ + 1) · ω (f, δ) for any δ, λ ∈ [0,∞);
vii) If f is continuous then limδ→0 ω (f, δ) = 0.

In order to study approximation properties of the operators defined later in
this paper we need the following lemma.

Lemma 3 For any functions A,B : {0, ..., n} → R+ we have
∣∣∣∣∣

n∨

i=0

A(i)−
n∨

i=0

B(i)

∣∣∣∣∣ ≤
n∨

i=0

|A(i)−B(i)| ,

for any n ∈ N∗.

Proof. We observe that
n∨

i=0

A(i) =
n∨

i=0

|B(i) + A(i)−B(i)| ≤
n∨

i=0

B(i) +
n∨

i=0

|A(i)−B(i)|,

inequality which, together wit the symmetric case, implies the statement of the
lemma.

3 Max-product Shepard approximation opera-
tors

Let f : X → [0,∞] be a continuous function. The Shepard-type max-product
operator associated to f is defined by

Sh(f, n) (x) = Sh (x) =
n∨

i=0




1
d(x, xi)λ

n∨

i=0

1
d(x, xi)λ

· f (xi)




=

n∨

i=0

f (xi)
d(x, xi)λ

n∨

i=0

1
d(x, xi)λ

, (1)



where λ ∈ N∗. It is easy to see that these are nonlinear, continuous operators.
For simplicity of the notation we ommit the arguments f, n. In what follows we
obtain the main results on these approximation operators.

The following Lemma is useful in obtaining the uniform approximation the-
orem of Weierstrass type.

Lemma 4 For the approximation by Shepard-type max-product operator we
have the following error bound

|Sh (x)− f (x)| ≤
(

m

n∧

i=0

d(x, xi) + 1

)
· ω

(
f,

1
m

)
, (2)

for any m ∈ N.

Proof. By Lemma 3 we have

|Sh (x)− f (x)| =

∣∣∣∣∣∣∣∣∣∣

n∨

i=0

f (xi)
d(x, xi)λ

−
n∨

i=0

f (x)
d(x, xi)λ

n∨

i=0

1
d(x, xi)λ

∣∣∣∣∣∣∣∣∣∣

≤

n∨

i=0

|f (x)− f (xi)|
d(x, xi)λ

n∨

i=0

1
d(x, xi)λ

.

By the properties of the modulus of oscillation of a function, we get for any
m ∈ N

|Sh (x)− f (x)| ≤

n∨

i=0

ω (f, d(x, xi))
d(x, xi)λ

n∨

i=0

1
d(x, xi)λ

≤

n∨

i=0

(md(x, xi) + 1) · ω
(

f,
1
m

)

d(x, xi)λ

n∨

i=0

1
d(x, xi)λ

.

By direct computation we get

|Sh (x)− f (x)| ≤

n∨

i=0

(md(x, xi) + 1)
d(x, xi)λ

n∨

i=0

1
d(x, xi)λ

· ω
(

f,
1
m

)
≤

≤




m

n∨

i=0

1
d(x, xi)λ−1

n∨

i=0

1
d(x, xi)λ

+ 1



· ω

(
f,

1
m

)
.



It is easy to check that

n∨

i=0

1
d(x, xi)λ−1

n∨

i=0

1
d(x, xi)λ

≤
n∧

i=0

d(x, xi)

and we obtain

|Sh (x)− f (x)| ≤
(

m

n∧

i=0

d(x, xi) + 1

)
· ω

(
f,

1
m

)
.

The following theorem is a uniform approximation theorem of Weierstrass
type.

Theorem 5 Any continuous function f : X → [0,∞], can be uniformly ap-
proximated by Shepard-type max-product approximation operators, i.e. for any
ε > 0, there exists n ∈ N and a sequence of points xi, i = 0, ..., n, such that
|Sh(f, n)(x)− f(x)| < ε.

Proof. Since X is a compact metric space, it is also totally bounded, i.e.
for every ε > 0 there exists n ∈ N and a finite covering of X by open balls Bi

having radius ε and center xi, i = 0, ..., m. If ε = 1
m . then

n∧

i=0

d(x, xi) < 1
m and

by the previous Lemma 4 we get

|Sh (x)− f (x)| ≤ 2 · ω
(

f,
1
m

)
.

By Theorem 2 ω
(
f, 1

m

) → 0 for m →∞ and the proof is complete.
In what follows, we consider the case of equally spaced data in [0, 1] interval.

In this case Jackson-type error estimate is obtained, that is the approximation
error is proportional to ω

(
f, 1

n

)
(see [3]). This result is important since it shows

that by changing the operations we do not loose approximation properties, since
in [10] the same order of the estimate is obtained for the classical Shepard
approximation operators.

Theorem 6 If f : [0, 1] → [0,∞] is continuous and xi = i
n , i = 0, ..., n, then

we have

|Sh (x)− f (x)| ≤ 3
2
ω

(
f,

1
n

)
.

Proof. Since
n∧

i=0

∣∣∣∣x−
i

n

∣∣∣∣ ≤
i

2n
,



by taking m = n in Lemma 4, we have

|Sh (x)− f (x)| ≤ 3
2
ω

(
f,

1
n

)
.

4 Concluding remarks and further research

The above obtained results show that sum and product are not the only opera-
tions that can be used in approximation theory. Indeed, by using max and prod-
uct as operations, we defined a Shepard-type approximation operator. More-
over the Weierstrass-type approximation theorem and the Jackson-type error
estimates obtained in this paper show us that we do not lose approximation
properties. Also, since the operator is nonlinear it is possible that it provides
better approximation for some function (it is well-known that using e.g. poly-
nomial approximation for the solution of a nonlinear differential equation leads
to loss of many properties).

Image processing uses as one of its usual tools approximation theory. So if we
provide an approximation method then it is immediately interpreted as an image
compression method. So we propose as a further research topic the efficient
implementation of max-product approximation operators in image compression.

As further reserch topic we propose also the following question: Which are
the best operations for approximation purposes for some given class of functions.
As good candidates in this research we mention Frank t-norms. These t-norms
have a Lipschitz-type property that can be helpful for approximation purposes.
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