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Abstract: In this paper a new modification of Newton’s method based on aggregation

operator-geometric mean, for solving nonlinear equations has proposed. The con-

vergence properties of proposed method have been discussed and has shown that the

order of convergence is three. Theoretically result has been verified on relevant nu-

merical problems and comparison of the behavior of the proposed method and some

existing ones are given.
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1 Introduction

We consider the problem of numerical determine a real root α of nonlinear
equation

f(x) = 0, f : D ⊆ R → R . (1)

The best know numerical method for solving equation (1) is the classical
Newton’s method given by

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, . . . , (2)

where x0 is an initial approximation sufficiently close to α. The convergence
order of the classical Newton’s method is quadratically for simple roots and
linearly for multiple roots. In literature [2, 3, 10, 11] are given some variant of
Newton’s methods, which have a target to improve the rate of convergence or
to make smaller the number of functional evaluations. The methods developed
by Fernando et al. [10] and Özban [2] suggested the new method proposed in
this work.



Definition 1 (See [9]) If the sequence {xn} tends to a limit α in such a way
that

lim
n→∞

xn+1 − α

(xn − α)p
= C

for some C 6= 0 and p ≥ 1, then the order of convergence of the sequence is
said to be p, and C is know as the asymptotic error constant.

If p = 1, p = 2 or p = 3, the convergence i said to be linearly, quadratically
or cubic, respectively.
Let en = xn−α be the error in the nth iterate of the method which produces
the sequence {xn}. Then, the relation

en+1 = Cep
n + O(ep+1

n ) = O(ep
n)

is called the error equation. The value of p is called the order of convergence
of this method.

Definition 2 (See [10]) Let α be a root of the function f and suppose that
xn+1, xn and xn−1 are three consecutive iterations closer to the root α. Then
the computational order of convergence ρ can be approximated using the for-
mula

ρ ≈ ln |(xn+1 − α)/(xn − α)|
ln |(xn − α)/(xn−1 − α)| .

In this work, as in scientific papers [2] and [10], Newton’s method is mod-
ificated by aggregation operators like: geometric, arithmetic and harmonic
means are.

Aggregation operators like: triangular norms and conorms, uninorms, cop-
ulas, weighted arithmetic means, ordered weighted arithmetic means and
compensated operators are, make a special class of aggregation operators.
All these operators are detailed considered in different scientific papers and
monographs, for example monograph of E. P. Klement, R. Mesiar and E. Pap
is dedicated to triangular norms [6], the ordered weighted averaging operators
are considered in edition of R. R. Yager i J. Kacprzyk [7], while copulas are
presented in monograph of R. B. Nelsen [8]. Many results connected with
aggregation operations can be found in edition of T. Calva, G. Mayor and R.
Mesiar [1].

We going to present a definition, some examples and properties of aggre-
gation operators.

Definition 3 An aggregation operator is a function A :
⋃

n∈N
[0, 1]n → [0, 1]

such that

i) A(x1, ..., xn) ≤ A(y1, ..., yn) whenever xi ≤ yi for all i ∈ {1, ..., n}.
ii) A(x) = x for all x ∈ [0, 1].



iii) A(0, ..., 0) = 0 and A(1, ..., 1) = 1.

Operators Π, as the operator of product, arithmetic mean M , Min, Max
and operator Ac are all aggregation operators.

Π(x1, . . . , xn) =
n∏

i=1

xi , M(x1, . . . , xn) =
1
n

n∑

i=1

xi ,

Min(x1, . . . , xn) = min(x1, . . . , xn) , Max(x1, . . . , xn) = max(x1, . . . , xn) ,

Ac(x1, . . . , xn) = max( 0, min( 1, c +
n∑

i=1

(xi − c)))

where the operator Ac :
⋃

n∈N[0, 1]n → [0, 1] is defined for all c ∈ (0, 1) .

The weakest aggregation operator, in designation Aw, and the strongest
aggregation operator As, are given by following:

(∀ n ≥ 2) (x1, . . . , xn) 6= (1, . . . , 1) : Aw(x1, . . . , xn) = 0
(∀ n ≥ 2) (x1, . . . , xn) 6= (0, . . . , 0) : As(x1, . . . , xn) = 1.

Aggregation operators between each other can compare like functions with
n-variables. For any aggregation operator A is satisfied:

Aw ≤ A ≤ As.

Also, the following is satisfied:

Aw ≤ Π ≤ Min ≤ M ≤ Max ≤ As.

Example 1 Aggregation operator: W4 :
⋃

n∈N [0, 1]n → [0, 1] defined by

W4(x1 , x2, . . . , xn) =
n∑

i=1

winxi ,

is the so called weighted arithmetic operator associated with weighted triangle
4.

Weighted arithmetic means are continuous, idempotent, linear, additive
and self-dual aggregation operators.

Example 2 Let f : [0, 1] → [−∞, +∞] continuous and strictly monotone
function. The aggregation operator Mf :

⋃
n∈N

[0, 1]n → [0, 1], which is given

by

Mf ( x1, x2, . . . , xn) = f−1
( 1

n

n∑

i=1

f(xi)
)

,

is called quasi-arithmetic mean.



The class of quasi-arithmetic means, root-exponentials operators Mp :⋃
n∈N

[0, 1]n → [0, 1] , p ∈ (−∞, 0) ∪ (0, +∞) is obtained by applying the func-

tion fp : [0, 1] → [−∞, +∞] , fp(x) = xp such as:

Mp(x1, x2, . . . , xn) =
( 1

n

n∑

i=1

xp
i

) 1
p

.

Marginal members of these classes are M0 = G = Mlog x, which is the
geometric mean, while M∞ = Max and M−∞ = Min which are not in class
of quasi-arithmetic means.

2 Description of the method

2.1 Arithmetic and Harmonic mean Newton’s Methods

Let α is a simple root of nonlinear equation f(x) = 0, where f is a sufficiently
differentiable function. It is clear, from Newton’s theorem that

f(x) = f(xn) +
∫ x

xn

f ′(z) dz . (3)

If we approximate the definite integral in (3) with rectangle (x− xn)f ′(xn),
and take x = α, we have that

0 ≈ f(xn) + (α− xn)f ′(xn),

and if α declare by the new approximation xn+1, we obtain the classical
Newton’s method

xn+1 = xn − f(xn)
f ′(xn)

.

Leading by such admission Fernando et al.[10] approximate the definite inte-
gral in (3) with trapezoid rule

∫ x

xn

f ′(z) dz ≈ 1
2
(x− xn)[f ′(xn) + f ′(x)],

and by such a way arrive the following method

xn+1 = xn − 2f(xn)
f ′(xn) + f ′(vn+1)

, where vn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, . . . ,

(4)
which is, in contrast to Newton’s method (2), instead of f ′(xn) using arith-
metic mean of f ′(xn) and f ′(vn+1). Therefore, it call arithmetic mean New-
ton’s method (AM). If we use harmonic mean instead of the arithmetic mean
in (4), we obtain

xn+1 = xn − f(xn)(f ′(xn) + f ′(vn+1))
2f ′(xn)f ′(vn+1)

, n = 0, 1, . . .



which call harmonic mean Newton’s method (HM) proposed by Özban [2].

2.2 New Modification of Newton’s Method

If we use the geometric mean instead of arithmetic mean in (4), we get the
new scheme

xn+1 = xn − f(xn)
sign(f ′(x0))

√
f ′(xn)f ′(vn+1)

,

where vn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, . . .

(5)

which we call geometric mean Newton’s method (GM).

3 Analysis of convergence

Theorem 1 Let f : D ⊆ R → R for an open interval D. Assume that f is
sufficiently differentiable function in the interval D and f has a simple root
in α ∈ D. If x0 is sufficiently close to α, then the new method defined by (5)
converges cubically and satisfies the following error equation:

en+1 =
(

c2
2 −

1
2
c2 − 3

2
c3

)
e3
n + O(e4

n), (6)

where en = xn − α and constants cj = f(j)(α)
j! f ′(α) for j = 1, 2, 3, . . ..

PROOF. Let α be a simple root of equation f(x) = 0 (i.e. f(α) = 0 and
f ′(α) 6= 0). Since the function f ′ is continuously in open interval D we
choice the initial approximation x0 sufficiently close to α ∈ D such that
sign(f ′(x0)) = sign(f ′(α)).
By Taylor expansion of f(xn) about α we get

f(xn) = f(α) + f ′(α)en + 1
2!f

′′(α)e2
n + 1

3!f
(3)(α)e3

n + O(e4
n)

= f ′(α)[en + c2e
2
n + 3c3e

3
n + O(e4

n)],
(7)

where en = xn − α and cj = f(j)(α)
j! f ′(α) . Similarly, we obtain

f ′(xn) = f ′(α)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + . . .]. (8)

Dividing (7) by (8), we get

f(xn)
f ′(xn)

= [en + c2e
2
n + 3c3e

3
n + O(e4

n)][1 + 2c2en + 3c3e
2
n + 4c4e

3
n + . . .]−1

= en − c2e
2
n + 2(c2

2 − c3)e3
n + O(e4

n),
(9)



and
vn+1 = xn − f(xn)

f ′(xn)

= α + c2e
2
n + 2(c3 − c2

2)e
3
n + O(e4

n).
(10)

By (10) and expanding f ′(vn+1) about α we obtain

f ′(vn+1) = f ′(α)[1 + 2c2
2e

2
n + 4(c2c3 − c3

2)e
3
n + O(e4

n)]. (11)

Multiplication (8) by (11), we get

f ′(xn+1)f ′(vn+1) = f ′2(α)[1+2c2en +(2c2
2 +3c3)e2

n +4(c2c3 +c4)e3
n +O(e4

n)] ,

and

sign(f ′(x0))
√

f ′(xn+1)f ′(vn+1)

= f ′(α)[1 + 2c2en + (2c2
2 + 3c3)e2

n + 4(c2c3 + c4)e3
n + O(e4

n)]
1
2

= f ′(α)[1 + 1
2 (2c2en + (2c2

2 + 3c3)e2
n + 4(c2c3 + c4)e3

n + O(e4
n))

− 1
8 (2c2en + (2c2

2 + 3c3)e2
n + 4(c2c3 + c4)e3

n + O(e4
n))2 + O(e3

n)]

= f ′(α)[1 + c2en + (c2
2 − 1

2c2 + 3
2c3)e2

n + O(e3
n)].

(12)

Hence, from equations (7) and (12), we have that

f(xn)
sign(f ′(x0))

√
f ′(xn+1)f ′(vn+1)

= [en + c2e
2
n + 3c3e

3
n + O(e4

n)][1 + c2en + (c2
2 − 1

2c2 + 3
2c3)e2

n + O(e3
n)]−1

= en + ( 1
2c2 + 3

2c3 − c2
2)e

3
n + O(e4

n).

Replacing this in (5) we obtain

xn+1 = xn − (en + (
1
2
c2 +

3
2
c3 − c2

2)e
3
n + O(e4

n))

or
en+1 = (c2

2 −
1
2
c2 − 3

2
c3)e3

n + O(e4
n) ,

which shows the third-order convergence of the geometric mean Newton’s
method.



4 Numerical results and conclusions

Table 1.

Function x0 i COC NOFE

NM AM HM GM NM AM HM GM NM AM HM GM

(a) 0.5 7 4 4 4 2.00 3.00 3.00 3.00 14 12 12 12
1 5 3 3 3 1.98 3.00 2.90 3.00 10 9 9 9
2 5 3 3 3 2.00 3.00 3.00 2.89 10 9 9 9

(b) -1 6 3 3 4 2.00 ND 3.00 3.00 12 9 9 12
-3 6 3 3 4 1.97 ND 3.00 3.00 12 9 9 12

(c) -2 8 6 5 5 2.00 3.00 3.00 2.97 16 18 15 15
-3 14 9 8 9 2.00 2.94 3.00 3.00 28 27 24 27

(d) 0 9 15 5 2 2.00 3.00 3.00 ND 18 45 15 6
1.5 7 5 4 4 1.98 3.00 3.00 3.00 14 15 12 12
2.5 6 4 3 4 2.00 2.90 3.00 2.97 12 12 9 12
3.5 7 5 4 4 2.00 3.00 3.00 3.00 14 15 12 12

(e) 1.5 15 467 7 12 1.96 ND 3.00 3.00 30 1401 21 36
2.5 7 5 4 5 1.98 ND 3.00 2.98 14 15 12 15
3.5 10 7 6 6 2.00 2.98 3.00 3.00 20 21 18 18

(f) 1.4 78 51 41 46 1.00 1.00 1.00 1.00 156 153 123 138
-3 113 75 60 67 1.00 1.00 1.00 1.00 226 225 180 201

NM - Newton’s method COC - Computational order of convergence
AM - Arithmetic mean N. method NOFE - Number of functional evaluations
HM - Harmonic mean N. method i - Number of iterations
GM - Geometric mean N. method ND - Not defined

In Table 1. we show the computational results of some relevant numerical
test to compare the efficiencies of the methods. The used stopping criterion
is |xn+1 − α|+ |f(xn+1)| < 10−14.

Test functions (See [5, 10])

(a) x3 + 4x2 − 10, α = 1.365230013414097,
(b) sin2 x− x2 + 1, α = −1.404491648215341,
(c) xex2 − sin2 x + 3 cos x + 5, α = −1.207647827130919,
(d) (x− 1)3 − 1, α = 2,
(e) (x− 1)6 − 1, α = 2,
(f) (x− 2)3(x + 2)4, α = 2 ∨ α = −2.

All numerical tests agree with the theoretically result of this paper. The most
important characteristics of geometric mean Newton’s method (GM) are:

(1) third order of convergence (for simple roots),
(2) does not require the computation of second or higher order derivatives,
(3) by the numerical results (Table 1.) it is evident that the total number

of functional evaluation required is less than of Newton’s method.

It is interesting to consider the behavior of tested methods for multiple roots.



The test function (f) has a multiple roots and the COC is linear. This is in
accordance with the theoretically properties of Newton’s method for multiple
roots (see [4]). Further investigations will be related to other aggregation
operator Newton’s methods.
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