
Neural Motor Control

Péter Odry, Gábor Kávai
Polytechnical Engineering College, Marka Oreskovica 16, Subotica, Serbia and
Montenegro
odry@vts.su.ac.yu

Abstract: The control of the rotation speed of serial universal motors is very complicated
when done using traditional control techniques, as it requires a very complex mathematical
model. Using neural network eliminates the need for mathematical modeling and allows
easy realization of a solution. The universal serial motor is driven with a PWM signal and
rpm control is realized with neural network. We compared neural with P(I(D)) realizations.

1 Background Information
The control of the rotation speed of serial universal motors is very complicated
when done using traditional control techniques, as it requires a very complex
mathematical model. [3] Using Neural network eliminates the need for
mathematical modeling and allows easy realization of a solution. Our other system
realization is heat pump, also very interesant control systems are in Neural
realizations [4].

The Neural Network consist of junctions which connected with links, also known
as processing units. For each junction ordered one numer, that’s name is weight.
The weights are tools for the long-distance information storing in the neural
network, the learning process occur with the appropriate modification of weights.
We modify the weights, so that the networks input/output behaviour be in
consonance with the enviroment, which provide the input datas.

The calculation algorithm consist of two basic step:

1 Calculation the output of network, with inputs and weights

2 Modification of weights with learning algorithm

1.1 Calculation the Output of Network
Each input is multiplyed by its Wi weight, and we summarize the products. This
value is the input of the activation function which gives the output:

()ii WXfY ⋅= ∑ (1)

The f() activation functions type is dependin on application, determined by the
problem that needed to be solved.

We used linear activation function for the easier computation. The serial universal
motor has different property depending on direction of rotation(designed for one-
way rotation). We used different weights for one and another direction. Its look,
like that we have two neural network for both directions.

The controller, which developed by us, use such neurons, one layer’s outputs is
the inputs for the next layer.

The network is constructed from layers. This layers contains neurons, and
individual layer’s neurons connected with front and behind layer’s neurons. The
connections is always one-way directed.

The first layer sends the the informations for the next layer, not modifies the input
datas.

The second layer’s task is the data processing. It summarize and modificate the
input datas. One network can contain one or more hidden layers, in our case, we
have 5 neuron in the hidden layer.

The third layers each and every neuron is an output, which number is optional. Its
function is identical with the hidden layers neurons. In our case one output it is.

1.2 Modification the Weights with the Learning Algorithm
Be the activation function linear:

xxf =)((1)

The final backpropagated error in the hidden layer:

)()()(')()()(nWnenXnWnn ijkijij ⋅=⋅⋅= δδ (2)

2 Hardware Description
An MSP430F149 device is used in this motor control demo application. It can
easily be substituted by any other MSP430 device with required hardware
elements available [1], [2]. The MSP430 is sourced by an 8-MHz crystal to
provide a high-resolution clock source that is used for both PWM generation and
speed measurement.

The universal serial motor is driven with a PWM signal that is generated using a
Timer_B capture/compare block operated in compare mode. The MSP430 output

signal is then delivered to the to the actual motor driver output stage
(TPIC0108B), this driver stage is supplied by 9V.

To provide feedback for the control loop, an optical encoder is used. With this, we
can determinate the direction of rotation, by the side of current speed. In one
rotation 45 impulse come from the encoder. The actual speed determination in
this way happen: with Comparator_A we request an interrupt, if rising edge
occurs on CA0.

Then we increment the value of a variable, which contained a number of
impluses, which has came up to the present. At the same time, we save the
information from the direction of the rotation speed.

We do it for a 25ms, where Timer_A give the possibility, and we save and
reset the number of impulses, which has came up to the present, and we
decide, that in which direction has the shaft rotated. This measurig method
not claim different averaging, by this means the systems reaction time not
decrease, as well as we obatain processing time and the speed sampling time
remain constant.

3 Software Description
After setting up the MSP430 clock system, the peripherals are configured.

Figure 1

Realised hardware

The program consist of 3 general component, these are: Comparator_A
interrupt, a Timer_B interrupt and the main() function. The Comparator_A
interrupt is used to count the impulses from the encoder, and for storing the
informations of directions of rotation. With Timer_B, we provide the time base for
speed measuring and the PWM signal, what serve for a motor driving and its
frequency is 2kHz. In the Timer_B interrupt service rutine we calculate the value
of speed of rotation in [rps].

In the main() function we calculate the output of neural network and the
modofication value of weights(learning).

We do this with the following functions:

signed int hneuron_lin(unsigned char n,unsigned char m) - for calculating
the output of one neuron in the hidden layer.

signed int oneuron_lin(unsigned char n,unsigned char m) - for calculating
the output of one neuron in the output layer.

void nnetwork(void) - make a loop from the two previous functions and gives
the neural network’s output.

void backprop(void) - modofies the value of weights(learning) with the
backpropagation algorithm

4 The Recording the Graphs
We recorded the graphs with different outputs of controller. In the next figure is
shown the simplifiest case, when the neural network’s output is connected with
gain to the motor driving circuit.

Figure 2

The rps diagram for a simple Neuro controller

Attributes: like a P controller, constant error is remain, this is constant in the full
merasuring range, small oscillation arise.

In the next figure P and Neuro conroller combination is visible:

Figure 3

The rps diagram for P and Neuro controller

Attributes: the constant error remains, on the other hand stabler holds the referent
value.

In the next figure we P and I effects are used to the output of Neuro controller:

Figure 4
The rps diagram for PI and Neuro controller

Attributes: the constant error disappear, on the other hand the motor clatter, when
track down to the accurate value, this can not be seen in the in the figure.

In the next figure, can be seen the optimal solution, when we summarize the
Neuro controller output values. Here the Neuro controller gives one differential
value in its output.

Figure 5

The rps diagram for I and Neuro controller

Attributes: The constant error disapperars, on the other hand bigger overshoot
occurs. After transition periods he holds the referent value more stabler.

Conclusion

On the Figure 3 we can see the Neural system’s output combined with P
controller, the improvement is preceptible in the constant error and it more stabler
holds the referfent value.

On the Figure 4 we can see the Neural system’s output combined with PI
controller, the constant error disappear, on the other hand the motor clatter, when
track down to the accurate value.

On the Figure 5 we can see the Neural system’s output combined with I
controller, the constant error disapperared, on the other hand bigger overshoot
occurs. After transition periods he holds the referent value more stabler.

The Neural systems important property is besides the adaptation capability and
smaller oscillations in overshoots, compared with the traditional P(I(D)).
References

[1] MSP430x13x, MSP430x14x Mixed Signal Microcontroller Data Sheet
(SLAS272)

[2] MSP430x1xx Family User’s Guide (SLAU049)

[3] Odry Péter et. al.:‘Fuzzy Logic Motor Control with MSP430x14x’,
Application Report, Texas Instruments, (SLAA 235), 2005 february

[4] Nyers J.: Comperision of a traditional and a microprocessor-controlled
heat pump control strategy, international conference, Sweinfurt Germany
may 2001

