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Abstract: In this paper the classical Portmanteau theorem which provides equivalent

conditions of weak convergence of sequence of probability measures is extended on

the space of the sequence of probability measures induced by random sets.
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1 Introduction

Random sets have been used as a generalization of random variables, [5, 7].
Let (Ω,A,P) be a probability space. While random variables associate to
elements of Ω single elements of R, random sets associate nonempty subsets
of R to elements of Ω.

Research of weak convergence of sequence random sets follows from weak
convergence of random variables. Weak convergence is very important in
probability theory. It has been used in central limit theorems, [1, 2], specially
by large deviation principle. The theory of large deviations concerned with
the asymptotic estimation of probabilities of rare events, and typically provide
exponential bound on probability of such events and characterize them. This
theory has found many applications in information theory, coding theory, im-
age processing, statistical mechanics, various kind of random processes (cer-
tain types of finite state Markov chains, Brownian motion, Wiener process),
stochastic differential equations, etc., see [3]. The Theorem of Portmanteau
establishes some equivalent statements for large deviation convergence. In
this paper we prove a Portmanteau type theorem for random sets.

The paper is organized as follows. Section 2 contains some basic defini-
tions and theorems from probability theory. Section 3 gives some equivalent
conditions of weak convergence (connections between convergence of sequence
of random variables, convergence of sequence of probability measures and con-



vergence of sequence of distribution functions) and Portmanteau theorem. In
Section 4 we present some basic notions and definitions of random sets. The
main result of this paper is Portmanteau theorem for random sets and it is
proved in Section 5.

2 Preliminaries

Let Ω be an arbitrary space or set of points ω. Set Ω contains all possible
results of an experiment. A class A of subsets of Ω is called σ-algebra if it
contains Ω and is closed under the formation of complements and countable
unions. A set function is a real valued function defined on some class subsets
of Ω.

Definition 1 A set function P on a σ-algebra A is a probability measure if
it satisfies these conditions:

(i) 0 ≤ P(A) ≤ 1 for every A ∈ A;

(ii) P(∅) = 0, P(Ω) = 1;

(iii) if (An)n∈N is a sequence of pairwise disjoint sets from A, then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

The next theorem gives some useful well-known properties of probability mea-
sures (see [1, 2]).

Theorem 1 Let P be a probability measure on a σ-algebra A.

(i) Continuity from below: If (An)n∈N and A lie in A and An ↑ A, then
P(An) ↑ P(A).

(ii) Continuity from above: If (An)n∈N and A lie in A and An ↓ A, then
P(An) ↓ P(A).

(iii) Monotonicity: If A ⊂ B, then P(A) ≤ P(B), for A,B ∈ A.

Definition 2 A measure space (Ω,A, P) is called probability space.

Definition 3 Let (Ω,A,P) be an arbitrary probability space, and let X be a
real-valued function on Ω such that for all x ∈ R

{ω | ω ∈ Ω, X(ω) < x} ∈ A.

Then X is a random variable on probability space (Ω,A, P).



It is clear that a random variable X : Ω → R defined on the probability space
(Ω,A,P) generates a probability distribution PX, for every B ∈ B (B is Borel
σ-algebra subsets of R), defined with

PX(B) = P({ω | X(ω) ∈ B}) = P(X−1(B)).

It is easy to check that PX satisfies conditions of Definition 1, i.e., PX is a
probability measure, i.e., probability measure induced by random variable.

Definition 4 The distribution function of the random variable X is the func-
tion FX(x) = P(X ≤ x), x ∈ R.

The next theorem gives relations between probability measure PX and distri-
bution function FX (see [1, 2]).

Theorem 2 (i) Let PX be a probability measure defined on measurable
space (R,B) and let FX : R→ R be a function defined by

FX(x) = PX((−∞, x]). (1)

Then FX is a distribution function.

(ii) If FX is a distribution function, then exists a unique probability measure
PX defined on a measurable space (R,B), such that for every real x (1)
holds.

In probability theory four different types of convergence are considered : con-
vergence almost everywhere, convergence in the mean, convergence in proba-
bility and convergence in distribution (weak convergence). We are interested
in weak convergence of random variables and we need the following defini-
tions: convergence of sequence of distribution functions and convergence of
sequence of probability measures (see [1, 2]).

Definition 5 Sequence of distribution functions (Fn)n∈N converges weakly
to the distribution function F, (write Fn ⇒ F), if

lim
n→∞

Fn(x) = F(x) (2)

for every continuity point x of F.

Definition 6 Let P, P1,P2, P3, . . . be probability measures defined on measur-
able space (R,B). Sequence of probability measures (Pn)n∈N converges weakly
to the probability measure P,(write Pn ⇒ P), if for every bounded and con-
tinuous function f : R→ R holds

lim
n→∞

∫

R

f dPn =
∫

R

f dP. (3)



Definition 7 The expected value of a real variable X is the Lebesgue integral
function X with respect to measure P

E(X) =
∫

Ω

X dP. (4)

If h : R→ R is a Borel’s function, then h(X) is a random variable too, and

E(h(X)) =
∫

Ω

h(X) dP.

3 Portmanteau Theorem

In this section we observe random variables X, X1, X2, X3, . . . defined on the
same probability space (Ω,A, P).

Definition 8 A sequence of random variables (Xn)n∈N converges in distrib-
ution (or converges weakly) to the random variable X, (write Xn

D→ X) if for
every bounded and continuous function f : R→ R holds

lim
n→∞

E(f(Xn)) = E(f(X)). (5)

The following theorems provide useful conditions equivalent to weak conver-
gence (see [1]). A set A in B is called a P-continuity set if boundary ∂A
satisfies P(∂A) = 0.

Theorem 3 Let X, X1,X2, . . . be random variables, all defined on the same
probability space (Ω,A,P). Let F,F1, F2, . . . be their distribution function and
P, P1, P2, . . . are probability measures on (R,B) corresponding to F,F1, F2, . . ..
The following conditions are equivalent:

(i) Sequence of random variables (Xn)n∈N converges in distribution to the
X.

(ii) Sequence of distribution function (Fn)n∈N converges weakly to the F.

(iii) Sequence of probability measures (Pn)n∈N converges weakly to the P.

Theorem 4 (Portmanteau) Let P, Pn (n ∈ N) be probability measures on
(R,B). These five conditions are equivalent:

(i) Pn ⇒ P.

(ii) lim
n→∞

∫
R

f dPn =
∫
R

f dP for every bounded, uniformly continuous real

functions f .

(iii) lim sup
n

Pn(F ) ≤ P(F ) for every closed set F .



(iv) lim inf
n

Pn(G) ≥ P(G) for every open set G.

(v) lim
n→∞

Pn(A) = P(A) for every P-continuity set A.

4 Random Sets

A random closed set is a random element in the space of all closed subsets of
the real line. Let O, F , K and C denote the collection of open subsets, closed
subsets, compact subsets and convex compact subsets of R, respectively. We
introduce sub-classes FK and FG of F by

FK = {F ∈ F | F ∩K = ∅}, for K ∈ K,
FG = {F ∈ F | F ∩G 6= ∅}, for G ∈ O.

The collections {FK | K ∈ K} and {FG | G ∈ O} generate a topology on F .
This topology is known as the hit-or-miss-topology. Class F is endowed with
Borel σ-algebra Σ(F) generated by hit-or-miss-topology (see [7]).

Definition 9 A random closed set S is a measurable transformation from a
probability space (Ω,A,P) into the measurable space (F ,Σ(F)).

Random closed set S generates a probability distribution PS, for every A ∈
Σ(F) in the following way

PS(A) = P({ω ∈ Ω | S(ω) ∈ A}) = PS(S ∈ A). (6)

In the theory of random sets all information about a random set is contained
in the capacity functional of S.

Definition 10 The capacity functional TS(K) (K ∈ K) of random closed
set S is defined by

TS(K) = PS(S ∈ FK) = PS(S ∩K 6= ∅). (7)

In the theory of random sets, capacity functional plays the same role as
distribution function in probability theory. More about capacity functional
and properties can be found in [7] and [5]. Convex random closed sets and
convex compact random sets have a very important role in the theory of
random sets. Let C0 = C ∩K be the class of all convex compact subsets of R.

Definition 11 A random closed set S is said to be convex if its realizations
are almost surely convex, i.e. S(ω) belongs to C almost surely.

Definition 12 A random closed set S is said to be convex compact if it S(ω)
belongs to C0 almost surely.

The distribution of any convex compact random set is determined by the
inclusion functional of S, (see [8]).



Definition 13 The inclusion functional tS(K) (K ∈ C0) of convex compact
random set S is defined by

tS(K) = PS(S ⊂ K). (8)

The functional TS(K), K ∈ C0 is naturally extended onto the class C by
tS(F ) = PS(S ⊂ F ), F ∈ C.

5 Portmanteau Theorem for Random Sets

Weak convergence of random sets is actually weak convergence of sequence
of probability distributions induced by sequence of random sets (see [8]).

Definition 14 A sequence of random closed sets (Sn)n∈N converges weakly
if the corresponding sequence of probability measures (Pn)n∈N (generated by
random closed sets) converges weakly in the usual sense, i.e.,

Pn(A) → P(A) (9)

for each A ∈ Σ(F) such that P(∂A) = 0.

Weak convergence of sequence of probability measures will be denoted in the
usual way, Pn ⇒ P. We observe that

ST = {K ∈ K | TS(K) = TS(intK)},

where intK is the interior of set K. Pointwise convergence of capacity func-
tionals on ST implies the weak convergence of the corresponding probability
measures on Σ(F) ([8]). The following results are due to Molchanov, see ([8]).

Theorem 5 A sequence of convex compact random sets (Sn)n∈N converges
weakly to a random closed set S̃ if for every K ∈ C0 holds

tn(K) → t̃(K), as n →∞,

where tn, t̃ are the inclusion functionals of random sets Sn and S̃ respectively.

Let Ct = {F ∈ C0 | t(F ) = t(int(F ))}.
Theorem 6 A sequence of convex compact random sets (Sn)n∈N converges
weakly to a random closed set S̃ if for every K ∈ Ct holds tn(K) → t̃(K), as n →
∞, where tn, t̃ are the inclusion functionals of random sets Sn and S̃ respec-
tively.

The next result shows equivalent conditions for weak convergence of sequence
probability measures induced by random closed sets.

Theorem 7 (Portmanteau) Let P, Pn (n ∈ N) be probability measures on
(F , Σ(F)). The following three conditions are equivalent:



(i) Pn ⇒ P.

(ii) lim sup
n

Pn(F ) ≤ P(F ) for every closed set F .

(iii) lim inf
n

Pn(G) ≥ P(G) for every open set G.

Proof

(i) ⇒ (ii) For a given sequence δk > 0, lim
k→∞

δk = 0, we construct a

sequence of closed sets Fk such that F ⊂ Fk, Fk ↓ F and P(∂Fk) = 0.

Since (i) holds, F ⊂ Fk and P(∂Fk) = 0, then

lim sup
n

Pn(F ) ≤ lim sup
n

Pn(Fk) = P(Fk)

for each k.

F is closed and Fk ↓ F so (ii) follows.

(ii) ⇒ (iii) Let G be an arbitrary open set. Then the complement of G,
denoted by Gc, is a closed set and using (ii) and Pn(G) + Pn(Gc) = 1
we have
1− P(G) = P(Gc) ≥ lim sup

n
Pn(Gc)

= lim sup
n

(1− Pn((Gc)c))

= lim sup
n

(1− Pn(G))

= 1− lim inf
n

Pn(G).

We have 1− P(G) ≥ 1− lim inf
n

Pn(G) and (iii) follows.

(iii) ⇒ (ii) The proof is analogous to the proof of (ii) ⇒ (iii).

(ii) ∧ (iii) ⇒ (i) Let intA denote the interior of set A, and let clA denote
its closure. If A is a set such that P(∂A) = 0, than P(clA) = P(intA).

From (i) follows lim sup
n

Pn(clA) ≤ P(clA) = P(intA).

From (iii) follows lim inf
n

Pn(intA) ≥ P(intA).

And we have

lim sup
n

Pn(clA) ≤ P(intA) ≤ lim inf
n

Pn(intA). (10)

From intB ⊂ clB and the monotonicity of Pn follows

lim sup
n

Pn(intA) ≤ lim sup
n

Pn(clA). (11)

From (10) and (11) follows

lim sup
n

Pn(intA) ≤ P(intA) ≤ lim inf
n

Pn(intA). (12)



From the definition of lim sup and lim inf follows

lim inf
n

Pn(intA) ≤ lim sup
n

Pn(intA). (13)

And finally, from (12) and (13) follows (iii).
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generated pseudo measures, Fuzzy Sets and Systems (in press).

[10] H.T. Nguyen, B. Bouchon-Meunier, Random sets and large deviations
principle as foundation for possibility measures, Soft Computing 8
(2003), 61-70.


