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Abstract: This paper give some motivations for introducing copulas and presents some

recent results on them. There is presented an application of copulas in the theory of

aggregation operators. Transformations of copulas by means of increasing bijections

on the unit interval and attractors of copulas are discussed. There is presented a

result on an approximation of associative copulas by strict and nilpotent triangular

norms.
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1 Introduction

In this paper we give the motivation for introducing a special class of real
monotone operations-copulas and we stress the important role of them in many
fields. We will present some recent results on copulas, [13, 14, 15, 16, 17]. In
Section 2 we present some basic facts about copulas and some their applica-
tions. In Section 3 we present an application of copulas for the construction
of aggregation operators. In Section 4 transformations of copulas by means
of increasing bijections on the unit interval and attractors of copulas are dis-
cussed. The invariance of copulas under such transformations as well as the
relationship to maximum attractors and Archimax copulas is investigated. In
Section 5 we show that the both the strict and the non-strict Archimedean
copulas form dense subclasses of the class of associative copulas.

2 Copulas

The well-known Sklar’s Theorem [25] states that each random vector (X, Y ) is
characterized by some copula C in a way that for its joint distribution HXY and
for the corresponding marginal distributions FX and FY we have HXY (x, y) =
C(FX(x), FY (y)).



2.1 Definition
A (two-dimensional) copula is a function C : [0, 1]2 → [0, 1] such that C(0, x) =
C(x, 0) = 0 and C(1, x) = C(x, 1) = x for all x ∈ [0, 1], and C is 2-increasing,
i.e., for all x, x∗, y, y∗ ∈ [0, 1] with x ≤ x∗ and y ≤ y∗ for the volume VolC of
the rectangle [x, x∗]× [y, y∗] we have

VolC([x, x∗]× [y, y∗]) = C(x, y)− C(x, y∗) + C(x∗, y∗)− C(x∗, y) ≥ 0.

Important examples of copulas are (we shall use the notations from [12]) the
upper bound triangular norm TM given by TM(x, y) = min(x, y) and the lower
bound triangular norm TL given by TL(x, y) = max(x+y−1, 0), and the product
TP given by TP(x, y) = x·y. So we have for every copula C that TL ≤ C ≤ TM.
Copulas form a subclass of the class V of functions V : [0, 1]2 → [0, 1] which are
continuous, non-decreasing in each component and satisfy Ran V = [0, 1] (the
elements of V are also called binary aggregation operators [1, 18]).

We mention here some applications of copulas. Under a.s.strictly increasing
transformations of X and Y the copula CXY is invariant, although we can
change the margins. Thus (for random variables with continuous distribution
functions) the study of rank statistics may be characterized as the study of
copulas and copula-invariant properties. For random variables with continuous
distribution functions, the extreme copulas TM and TL are attained precisely
when X is a.s. an increasing (respectively, decreasing) function of Y . Therefore
copulas can be used to construct non-parametric measures of dependence.

Let ? be the binary operation defined on the set of two-dimensional copulas
for copulas C1 and C2 by

C1 ? C2(x, y) =
∫ 1

0

∂C1(x, t)
∂t

· ∂C2(t, y)
∂t

dt, (1)

(these partial derivatives exist almost everywhere). Then C1 ? C2 is a copula,
and the set of copulas is a non-commutative semigroup under the operation ?.
The strong interpretation in the context of Markov processes is the following:
If (Xt)t∈I is a real stochastic process with parameter set I and if Cst is the
copula of Xs and Xt, then the transition probabilities of the process satisfy the
Kolmogorov–Chapman equation if and only if Cst = Csu ?Cut for all s, t, u ∈ I
with s < u < t, see [20].

In the theory of probabilistic metric spaces it is important to obtain a
rich source of different triangle functions which would enable the construction
of new probabilistic metric spaces, see [10, 24]. A triangle function τ is a
binary operation on the family of all distance distribution functions ∆+ that
is commutative, associative, and non-decreasing in each place, and has H0 as
identity. One of the useful constructions goes in the following way. Let C be a
copula and let L : [0,∞]2 → [0,∞] be a surjective and continuous function on
[0,∞]2 \{(0,∞), (∞, 0)} and for each x ∈ [0,∞[ the set Lx = {(u, v) ∈ [0,∞]2 |
L(u, v) < x} is bounded and ([0,∞], L,≤) is a partially ordered semigroup. The



function σC,L : ∆+ ×∆+ → ∆+ is defined by

σC,L(F, G)(x) =





0 if x ∈ [−∞, 0],∫

Lx

dC(F (u), G(v)) if x ∈ (0,∞),

1 if x = ∞,

where the integral is of Lebesgue–Stieltjes type. σC,L is a triangle function if
and only if C = (< (aα, eα), TP >)α∈A, see [24], Corollary 7.4.4.

2.2 Remark
The concept of a copula can be extended to n dimensions. An n-copula is
an n-dimensional distribution function whose support is in the unit n-cube
and whose one-dimensional margins are uniform, see [20, 24]. If J is an n-
dimensional distribution function with one-dimensional margins F1, . . . , Fn ,
then there is an n-copula C such that

J(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

for all (x1, . . . , xn) ∈ Rn. Moreover, for any n-copula:

TL(x1, . . . , xn) ≤ C(x1, . . . , xn) ≤ TM(x1, . . . , xn).

The upper function TM is an n-copula for any n ∈ N, the lower function TL is
not an n-copula for any n > 2. The main problem in the theory of copulas is to
determine which sets of copulas (of possible different dimensions) can appear
as margins of a single higher-dimensional copula.

3 Aggregation operator construction based on
copulas

We present in this section some results from [15]. we remark that such a
copula-based approach to aggregation was originally proposed in [11] for the
Frank family of t-norms (see, e.g., [7, 12]). Let X be a non-empty index set and
f : X −→ [0, 1] the input system to be aggregated. Let (X, A,m) be a fuzzy
measure space, i.e., A is a σ-algebra of subsets of X (in the case of a finite
set X we usually take A = 2X), and m : A −→ [0, 1] a fuzzy measure, thus
satisfying m(∅) = 0, m(X) = 1 and m(A) ≤ m(B) whenever A ⊆ B. Denote
by L(A) the set of all A-measurable functions from X to [0, 1].

3.1 Definition
Consider two fuzzy measure spaces (X, A,m) and (]0, 1[2 , B(]0, 1[2), µ). The
functional Mm,µ : L(A) −→ [0, 1] given by

Mm,µ(f) = µ(Dm,f ),

will be called (m, µ)-aggregation operator, where

Dm,f = {(x, y) ∈ ]0, 1[2 | y < m({f ≥ x})}.



Special fuzzy measures µ imply reasonable properties of the (m,µ)-aggregation
operator Mm,µ:

3.2 Proposition
Let C : [0, 1]2 −→ [0, 1] be a copula and denote by µC the unique probabil-
ity measure on (]0, 1[2 , B(]0, 1[2)) with µC(]0, x[ × ]0, y[) = C(x, y) for all
(x, y) ∈ ]0, 1[2. Then, for each fuzzy measure space (X, A, m), the (m,µC)-
aggregation operator Mm,µC

is an idempotent aggregation operator and we have
Mm,µC

(1A) = m(A) for all A ∈ A.

Choosing adequate copulas C, we obtain some well-known types of integrals.

3.3 Example
(i) If C equals the standard product TP, i.e., µTP is the Lebesgue measure

on B(]0, 1[2), then Mm,µTP
is just the Choquet integral with respect to m

(see [3, 21]). If, in addition, m is a σ-additive measure on (X, A), then
Mm,µTP

coincides with the classical Lebesgue integral with respect to m,
and for X = {1, 2, . . . , n} we obtain a weighted mean. If X = {1, 2, . . . , n}
and if m is a symmetric fuzzy measure on (X, 2X) then Mm,µTP

is an OWA
operator.

(ii) If C equals the minimum TM then

µTM
(A) = λ({x ∈ ]0, 1[ | (x, x) ∈ A}),

and Mm,µTM
equals the Sugeno integral, see [21]. If X = {1, 2, . . . , n} and

if m is a symmetric fuzzy measure on (X, 2X) then Mm,µTM
is an WOWM

(weighted ordered weighted maximum) operator.
(iii) If C equals the ÃLukasiewicz t-norm TL then

µTL
(A) = λ({x ∈ ]0, 1[ | (x, 1− x) ∈ A}),

and if the index set X is finite, then Mm,µTL
is the so-called opposite

Sugeno integral [11].

Related dual aggregation operators we have the following result.

3.4 Proposition
Let X be a finite set. Keeping the notations and hypotheses of Proposition 3.2,
we have

Md
m,µC

= Mmd,µĈ
. (2)

If a copula C coincides with its survival copula Ĉ, then a special form of (2)
holds, namely, Md

m,µC
= Mmd,µC

. All copulas with the property C = Ĉ were
characterized in [14]. In particular, an associative copula C coincides with its
survival copula Ĉ if and only if C is either a member of the family of Frank t-
norms (TF

λ )λ∈[0,∞] or if C is a symmetric ordinal sum of Frank t-norms [12, 14].



Because of TF
0 = TM, TF

1 = TP, and TF
∞ = TL, for all Sugeno, Choquet and

opposite Sugeno integrals we have (for X finite)

(∫

X

f dm
)d

=
∫

X

f dmd.

4 Transformations of copulas

Here we present results from [16, 17]. If Φ denotes the set of all increasing
bijections from [0, 1] to [0, 1], then for each ϕ ∈ Φ and for each V ∈ V consider
the function Vϕ : [0, 1]2 → [0, 1] given by

Vϕ(x, y) = ϕ−1(V (ϕ(x), ϕ(y))).

It is obvious that a ∈ [0, 1] is an idempotent element of C if and only if ϕ(a) is
an idempotent element of Cϕ, and M is the only copula which is ϕ-invariant
for each ϕ ∈ Φ. In general, the fact that C is a copula is neither necessary
nor sufficient for Cϕ being a copula. Now we first are interested under which
conditions Cϕ is a copula and under which conditions a copula C is ϕ-invariant.

4.1 Example
For p ∈ ]0,∞[ consider the function ϕp ∈ Φ defined by ϕp(x) = xp.
(i) The product TP is ϕp-invariant for each p ∈ ]0,∞[.
(ii) TL is ϕp-invariant only if p = 1, and TLϕp

is a copula only if p ∈ ]0, 1].

The following result follows from [19, Theorem 7]:

4.2 Proposition
Assume that V ∈ V is associative and has neutral element 1, and let ϕ ∈ Φ.
Then Vϕ is a copula if and only if for all x, y, z ∈ [0, 1]

|ϕ−1(V (x, z))− ϕ−1(V (y, z))| ≤ |ϕ−1(x)− ϕ−1(y)|.

4.3 Theorem
For each ϕ ∈ Φ the following are equivalent:
(i) The function ϕ is concave.
(ii) For each copula C the function Cϕ is a copula.

The class of increasing bijections ϕp introduced in Example 4.1 contains all
transformations ϕ1/n mentioned in the introduction. Moreover, because of the
Lipschitz continuity, a copula C is ϕp-invariant for each p ∈ ]0,∞[ if and only
if C is ϕ1/n-invariant for each n ∈ N.

Following [8] (compare also [2]), a copula C∗ is said to be the maximum
attractor of the copula C (or, equivalently, C belongs to the maximum domain
of attraction of C∗) if for all (x, y) ∈ [0, 1]2 we have

lim
n→∞

Cn(x1/n, y1/n) = C∗(x, y).



It is obvious that each copula C which is ϕp-invariant for each p ∈ ]0,∞[ is a
maximum attractor of itself, i.e., C∗ = C. The set of all maximum attractor
copulas will be denoted by M. We have by [22, 26] (compare also [4]) that each
maximum attractor copula C∗ can be expressed in the form

C∗(x, y) = elog(xy)·A( log x
log(xy) )

for some A from the set

{A : [0, 1] → [0, 1] | A is convex and max(x, 1− x) ≤ A(x) for all x ∈ [0, 1]}.
It is obvious that TP is the weakest maximum attractor and TM is the strongest
one. The class M is closed under suprema and weighted geometric means.
Although TL belongs to the maximum domain of attraction of TP, there are
copulas not belonging to any maximum domain of attraction.

In the next proposition we give the relationship between ϕp-invariant cop-
ulas and the class M of maximum attractors.

4.4 Proposition
For a copula C, the following are equivalent:
(i) C ∈ M.
(ii) Cϕp = C for all p ∈ ]0,∞[.
(iii) Cϕp = Cϕq = C for some p, q ∈ ]0,∞[ such that log p

log q is irrational.

5 Uniform approximation of associative copulas

We present here the result from [13]. The set X = [0, 1][0,1]2 of all func-
tions from the unit square [0, 1]2 into the unit interval [0, 1], will be equipped
with the topology T∞ induced by the metric d∞ : X2 −→ [0,∞] given by
d∞(f, g) = sup

{|f(x, y) − g(x, y)| ∣∣ (x, y) ∈ [0, 1]2
}

(corresponding to the
uniform convergence). The class of associative copulas, i.e., of all 1-Lipschitz
t-norms [12] is a compact subset of X (observe that this is not true for the class
of all continuous t-norms).

The main result of [13] can be putted in the following theorem.

5.1 Theorem
The set Ca of all associative copulas is the closure of both the set Cs of all strict
copulas and the set Cns of all non-strict Archimedean copulas.

As a consequence we have that each associative copula can be approximated
with arbitrary precision by some strict as well as by some non-strict Archime-
dean copula. Notice that Cs and Cns are disjoint sets whose union, i.e., the set
of Archimedean copulas, is a proper subset of Ca. As it was proven in [12], the
convergence of Archimedean copulas is strongly related to the convergence of
their corresponding generators. To be precise, a sequence (Cn)n∈N of Archime-
dean copulas with generators (ϕn)n∈N converges to an Archimedean copula C



with generator ϕ if and only if there is a sequence of positive constants (cn)n∈N
such that for each x ∈ ]0, 1] we have lim

n→∞
cn · ϕn(x) = ϕ(x).

Given two copulas C and D, consider their ∗-product C ∗D introduced in
(1) which is always a copula, i.e., the ∗-product is an operation on the set C

of all copulas. Moreover, (C, ∗) is a non-commutative semigroup whose annihi-
lator is the product TP and whose neutral element is the minimum TM. As a
consequence of Theorem 5.1 and [5, Theorem 2.3], for each associative copula
C and for each copula D there are sequences of Archimedean and strict and
non-strict Archimedean copulas (Cn)n∈N, respectively, such that the sequences
(Cn)n∈N and (Cn ∗D)n∈N converge uniformly to C and C ∗D, respectively.
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