
The Syntax Zooming

Aleksandar Perović, Nedeljko Stefanović, Aleksandar Jovanović
GIS (Group for Intelligent Systems), Faculty of Mathematics, Belgrade
E-mail: peramail314@yahoo.com

Abstract: We shall present various procedures for the syntax analysis in certain formal
systems defined by the user, which are integrated in the proof checker. The flexibility and
the applicability of the method lies in the fact that the program treats formal theories as
parameters (both axioms and derivation rules are parts of the input), so developed
algorithms work for any formalism which can be expressed within the language of the
predicate logic.

1 Introduction
By syntax zooming we assume variety of algorithms for processing of syntax
forms, i.e. algorithms that can allow us to resolve problems such as syntax
correctness, pattern matching, proof correctness, and in general, analysis and
better understanding of information bearing structures. We shall present a solution
for the mentioned problems in the form of the proof checker. The flexibility and
the applicability of the method lie in the fact that the program treats formal
theories as parameters (both axioms and derivation rules are parts of the input), so
developed algorithms work for any formalism which can be expressed within the
language of the first order predicate calculus (recall that the language of the
predicate calculus contains just variables, constant, functional and relational
symbols, logical connectives, quantifiers, brackets, the comma symbol and the
symbol for equality).

Let us proceed with some basic definitions. A predicate theory T is, in our case, a
finite nonempty set of predicate axioms, axiom schemata and derivation rules. The
notion of a term we define recursively as follows:

• Constant symbols and variables are terms.

• If F is an arbitrary functional symbol of arity n and if ntt ,...,1 are

arbitrary terms, then the string),...,(1 nttF is also a term.

• Terms can be obtained only by finite use of the above clauses.

The notion of an atomic formula we shall define by the following two clauses:

• For arbitrary terms t and 't the string 'tt = is an atomic formula.

• For arbitrary relational symbol R of arity n and arbitrary terms ntt ,...,1 ,

the string),...,(1 nttR is also an atomic formula.

• Atomic formulas cannot be obtained in any other way.

The notion of a formula we recursively define as follows:

• Atomic formulas are formulas.

• If A and B are arbitrary formulas and if x is an arbitrary variable, then
the strings A¬ ,)(BA∧ ,)(BA∨ ,)(BA → ,)(BA ↔ , xA∀ and

xA∃ are also formulas.

• Formulas can be obtained only by finite use of the above clauses.

Let A be a formula and let x be a variable which occur in the formula A . If Q
is an arbitrary quantifier, then we say that each occurrence of the variable x in the
formula QxA is bounded by the quantifier Q . Each occurrence of a variable
which is not bounded by some quantifier we shall call the free occurrence.

The set of axioms is any subset of the set of all formulas, and derivation rules are
relations on formulas of arity greater than 1. If ξ is a derivation rule and

),,...,(1 BAA nξ is true, then we say that formula B is immediate consequence of

formulas nAA ,...,1 by the ruleξ .

The proof in the given predicate theory T is a finite sequence of formulas where
each formula is either axiom of T , or it can be derived from some preceding
formulas by any derivation rule.

2 Input Format
The main difficulty lies in the fact that most of classical logics do not have a finite
set of axioms. For instance, the classical propositional calculus has the following
axioms:

)(ABA →→ ,))()(())((CABACBA →→→→→→
and)()(BAAB →→¬→¬ , where A , B and C are arbitrary propositional
formulas, so we have a countable (thus infinite) set of axioms. Since we want to
treat the classical logics as well, we have to deal with the meta formulas (such as
the above schemata) as well.

Back to the format of the input file: We have the following keywords and special
symbols:

• The commands for the meta identifiers: \function_variable,
\constant_variable, \relation_variable, \variable_variable,
\term_variable, \formula_variable. For instance, the command
\function_variable{X} has the following effect: the value of the identifier
X ranges over functional symbols.

• Identifiers (variables, functional, relational and constant symbols):
\variable, \constant, \function, \relation, \term.

• Other commands: \axiom, \bounded, \free, \term, \substitution, \relation,
\rule.

• Special symbols: ~ /\ \/ => <=> { } () , =

There are no reserved words. The identifiers are nonempty sequences of letters,
digits and underscore symbols starting with letter or underscore symbol. The
syntax is case sensitive. All white spaces and their sequences are equivalent to one
space symbol.

The input file with theory description is an ASCII file containing a sequence of
commands of the form

\constant|{identifier}

\variable|{identifier}

\function| {identifier}{arity}

\relation|{identifier}{arity}

\constant_variable|{identifier}

\variable_variable|{identifier}

\function_variable|{identifier}{arity}

\relation_variable{identifier}{arity}

\term_variable|{identifier}

\formula_variable{identifier}

\axiom{identifier}{description of formula}{conditions}

\rule{identifier}{arity}{description of formula}{conditions}

The conditions are commands of the form \free(x,A),

\bounded(x,A),

\partially_substituted(A,x,t,B)

separated by commas, where A and B are formulas or variables for formulas, x is a
variable or a variable for variables and t is a term or a variable for terms. For
instance, the meaning of the last command is that the formula A can be obtained
from the formula B by replacing any free occurrence (not necessary all of them) of
the variable x by term t, where all replacements are regular.

Input file which contains the (potential) proof is an ASCII file with nonempty
sequence

of descriptions of formulas separated by ";" without variables for constants,
variables, functional

symbols, terms and formulas. Description of formula is given in the usual
mathematical syntax

(possibly) with the using of the command \substitution (A,x,t),

where A is any formula or a variable for formulas, x is any variable or a variable
for variables, and t is any term, or any variable for constants or any variable for
terms.

3 The Syntax Correctness
We shall present an algorithm for checking the syntax correctness of the given
predicate formula by transforming it into a postfix form. We have two recursive
procedures: for the extraction of a first term (from left to right) from the given
string and writing its postfix form, and for the transformation of the given formula
into a postfix form. To simplify notation, by term unit we shall call variables,
constant symbols, variables for variables, variables for terms and variables for
constant symbols.

The “postfix form of a term” algorithm

Input: a sequence S of tokens (possibly empty). If nm < , then we assume that
the sequence mn ss ,..., is empty.

Output: a sequence nk ss ,..., of the tokens that are not scanned yet; an error
report; as a side effect, an appending in the global variable Postfix of the postfix
form of the first subterm (from left to right) of the given sequence.

• If S is empty, then the procedure halts with an error report.

• If 1s is a term unit, then append 1s in Postfix and return the rest of the S .

• If 1s is neither a term unit nor a functional symbol, then the procedure halts
with an error report.

• If 1s is a functional symbol (or a variable for functional symbols) and 2s is
not a left bracket, then the algorithm halts with an error report.

• If 1s is a functional symbol of arity k (or a variable for functional symbols

of arity k), and 2s is a left bracket, then:

(1) Initialize i to 1.

(2) Recursively call the function with the sequence nss ,...,3 as input. If
the return of the recursive call is an error report, then the procedure
halts with an error report. Otherwise let us denote the returned string
by lss ,...,1 .

(3) If 1<l then the procedure halts with an error report.

(4) If ki < and 1s not equal to “,” or if ki = and 1s differs from “)”,
then the procedure halts with an error report.

(5) If ki < then increment i by 1 and go to step (2). Otherwise, append
scanned functional symbol/variable for functional symbols in Postfix.

The “postfix form of a formula” algorithm

Input: a sequence S of tokens (possibly empty). If nm < , then we assume that
the sequence mn ss ,..., is empty.

Output: a sequence nk ss ,..., of the tokens that are not scanned yet; an error
report; as a side effect, an appending in the global variable Postfix of the postfix
form of the first subformula (from left to right) of the given sequence.

• If S is empty, then the procedure halts with an error report.

• If 1s is a variable for formulas, then append it in Postfix and

return nss ,...,2 .

• If 1s is a term unit, or a functional symbol, or a variable for functional
symbols then:

o Call the “postfix form of a term” procedure with the same input. On
error report the procedure halts with an error report. Otherwise, let us
assume that the return is a sequence lss ,...,1 .

o If 1s differs from “=”, the procedure halts with an error report.

o Call the “postfix form of a term” procedure with input lss ,...,2 . On
error report the procedure halts with an error report. Otherwise,
append “=” in Postfix and return the same sequence as the “postfix
form of a term” procedure.

• If 1s is equal to “~” then recursively call this same procedure with the

sequence nss ,...,2 as input. On error report the procedure halts with an
error report. Otherwise append “~” in Postfix and return the same sequence
that is returned from the recursive call.

• If 1s equals to “(“ then:

o Recursively call this same procedure with the sequence nss ,...,2 as
input. On error report the procedure halts with an error report.
Otherwise, let us assume that the returned sequence is lss ,...,1 .

o If 1<l or 1s is not a binary logical connective, then the procedure

halts with an error report. If not, memorize 1s .

o Call this same procedure with lss ,...,2 as input. On error report the
procedure halts with an error report. Otherwise, let us assume that
the returned sequence is mss ,...,1 .

o If 1<m or 1s differs from “)”, the procedure halts with an error
report. Otherwise append the memorized connective in Postfix and
return the sequence mss ,...,2 .

• If 1s is a quantifier then:

o Memorize it.

o In 2<n or 2s is neither a variable nor a variable for variables, then

the procedure halts with an error report. Otherwise memorize 2s .

o Recursively call this same procedure with the sequence nss ,...,3 as
input. On error report the procedure halts with an error report.
Otherwise, append in Postfix first the memorized variable, then the
memorized quantifier, and return the same sequence that is returned
from the recursive call.

• If 1s is a relational symbol (or a variable for relational symbols) and 2s is
not a left bracket, then the procedure halts with an error report.

• If 1s is a relational symbol of arity k (or a variable for a relational symbol

of arity k) and 2s is a left bracket, then:

(1) Initialize i to 1.

(2) Call the “postfix form of a term” procedure with the sequence

nss ,...,3 as input. If the return of the call is an error report, then the
procedure halts with an error report. Otherwise let us denote the
returned string by lss ,...,1 .

(3) If 1<l then the procedure halts with an error report.

(4) If ki < and 1s not equal to “,” or if ki = and 1s differs from “)”,
then the procedure halts with an error report.

(5) If ki < then increment i by 1 and go to step (2). Otherwise, append
scanned relational symbol in Postfix.

• If 1s is the operator \substitution and 2s is not a left bracket, then the
procedure halts with an error report.

• If 1s is the operator \substitution and 2s is a left bracket, then:

(1) Recursively call this same procedure with the sequence nss ,...,3 as
input. On error report the procedure halts and returns an error report.
Otherwise let us denote the returned sequence by lss ,...,1 .

(2) If 4<l or at least one of 1s and 3s differs from “,”, or 2s is not a
variable (or a variable for variables), then the procedure halts with an
error report. Otherwise, append the scanned variable in Postfix.

(3) Call the “postfix form of a term” procedure with the sequence

lss ,...,4 as input. On error report the procedure halts with an error

report. If not, let us denote the returned sequence by mss ,...,1 .

(4) If 1<m or 1s differs from the right bracket, then the procedure
halts with an error report. If not, append \substitution in Postfix and
return mss ,...,2 .

4 The Pattern Matching
In this section we shall present the procedure that checks whether the given
formula B is an instance of the given axiom A or not. We shall give the detailed
algorithm for the propositional case. The predicate case is much more complicated
(and lengthy as well), so we shall give just the brief sketch of that case.

The first subterm procedure

Input: a propositional formula in postfix form.

Output: the first subtrerm (from right to left) of the given formula

• Initialization: Counter = 0, List = empty.

• If the scanned token is a binary connective, then we increase Counter by 1,
append the token in List and scan the next token.

• If the scanned token is the negation, then we scan the next one.

• If the scanned token is propositional letter, then we append the token in List
and decrease Counter by 1. If Counter = 0, then the procedure halts and
returns List, otherwise we scan the next token.

Propositional pattern matching

Input: a pattern A (i.e. a Boolean combination of formula variables), and a
propositional formula B .

Output: YES, if the formula B is an instance of the pattern A ; NO otherwise.

• Transform A and B into postfix form and then start to scan them
simultaneously token by token from right to left.

• The scanned token of the pattern A is a logical connective. If the scanned
token of the formula B is not the same connective, then the matching is
impossible, so the procedure returns NO. In the case of matching we scan
the next token in both formulas. The algorithm halts and returns NO if one
of A and B is exhausted by the scanning process and the other is not. If
both A and B are scanned, the procedure returns YES.

• The scanned token of the pattern A is a letter. Then we extract the
subformula of the formula B which starts with the current scanned token
of B , and then we set the condition: letter = subformula. The procedure
returns NO if this condition contradicts some of earlier introduced
conditions. On soundness we scan the next token of A and the first token
of B (from right to left) which doesn’t belong to the extracted subformula.
The algorithm halts and returns NO if one of the formulas is exhausted by
the scanning process and the other is not. If both formulas are scanned, the
procedure returns YES.

The pattern matching procedure for the predicate case is recursive one and has
several subprocedures such as term matching, determination of propositional
structure of the given predicate formula, matching of propositional structures and
unification in the presence of substitution.

5 The Proof Correctness
In this section we shall present the main algorithm, i.e. the integration of
previously described procedures.

Input: a representation of a predicate theory and list of predicate formulas.

Output: YES, if the given list represents a proof in the given predicate theory; NO
otherwise.

(1) Transform given formulas into postfix form. On any occurrence of syntax
incorrectness the algorithm halts. If each formula is correct, then form a sequence
from the list of formulas which are not axioms. Let m be a length of the formed
sequence and let nA be the n-th formula of the sequence.

(2) n=0

(3) Output = YES

(4) If m=n, then the algorithm halts. Otherwise, increase n by 1 and do the
following:

Check whether nA is an instance of an axiom or not. If the answer is positive, go

to (4). Otherwise, check whether nA can be obtained from preceding members of
the sequence by any derivation rule or not. If the answer is positive, then go to 4.
Otherwise, change the value of Output into NO and stop the algorithm.

6 Further Research
We plan to modify presented proof checker to wide class of logics. This
modification can be used not only for verification of formal proofs in some
classical formal systems (such as first order predicate logic, modal logic, Heyting
algebra etc.), but also for an analysis of natural languages.

Our main goal is to develop similar procedures for the information bearing
structures such as music scores representation and sequences in molecular biology,
since both can be treated as syntax forms and there is a need of finding an
adequate similarity criteria (or developing some sort of invariance theory) for such
forms.

References

[1] Melvin Fitting, First-Order Logic and Automated Theorem Proving,
Springer-Verlag 1996

[2] Raymond M. Smullyan, First-Order Logic, Springer-Verlag 1968

[3] S. C. Kleene, Introduction to Metamathematics, North-Holland 1952

[4] A. Robinson, A. Voronkov (editors), Handbook of Automated Reasoning,
vol 1,2, Elsevier Science 2001

[5] J. Shoenfield: Mathematical logic, Addison-Wesley 1967

[6] A. Jovanović: Group for Intelligent Systems - Problems and Results,
Intelektualnie sistemy, Lomonossov Un and RAN, 6, 2002

