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Abstract: We shall present various procedures for the syntax analysis in certain formal 
systems defined by the user, which are integrated in the proof checker. The flexibility and 
the applicability of the method lies in the fact that the program treats formal theories as 
parameters (both axioms and derivation rules are parts of the input), so developed 
algorithms work for any formalism which can be expressed within the language of the 
predicate logic. 

1 Introduction 
By syntax zooming we assume variety of algorithms for processing of syntax 
forms, i.e. algorithms that can allow us to resolve problems such as syntax 
correctness, pattern matching, proof correctness, and in general, analysis and 
better understanding of information bearing structures. We shall present a solution 
for the mentioned problems in the form of the proof checker. The flexibility and 
the applicability of the method lie in the fact that the program treats formal 
theories as parameters (both axioms and derivation rules are parts of the input), so 
developed algorithms work for any formalism which can be expressed within the 
language of the first order predicate calculus (recall that the language of the 
predicate calculus contains just variables, constant, functional and relational 
symbols, logical connectives, quantifiers, brackets, the comma symbol and the 
symbol for equality). 

Let us proceed with some basic definitions. A predicate theory T  is, in our case, a 
finite nonempty set of predicate axioms, axiom schemata and derivation rules. The 
notion of a term we define recursively as follows: 

• Constant symbols and variables are terms. 

• If F is an arbitrary functional symbol of arity n  and if ntt ,...,1  are 

arbitrary terms, then the string ),...,( 1 nttF  is also a term. 

• Terms can be obtained only by finite use of the above clauses. 



The notion of an atomic formula we shall define by the following two clauses: 

• For arbitrary terms t  and 't  the string 'tt =  is an atomic formula. 

• For arbitrary relational symbol R  of arity n  and arbitrary terms ntt ,...,1 , 

the string ),...,( 1 nttR  is also an atomic formula. 

• Atomic formulas cannot be obtained in any other way. 

The notion of a formula we recursively define as follows: 

• Atomic formulas are formulas. 

• If A and B are arbitrary formulas and if x  is an arbitrary variable, then 
the strings A¬ , )( BA∧ , )( BA∨ , )( BA → , )( BA ↔ , xA∀  and 

xA∃  are also formulas. 

• Formulas can be obtained only by finite use of the above clauses. 

Let A  be a formula and let x  be a variable which occur in the formula A . If Q  
is an arbitrary quantifier, then we say that each occurrence of the variable x  in the 
formula QxA  is bounded by the quantifier Q . Each occurrence of a variable 
which is not bounded by some quantifier we shall call the free occurrence. 

The set of axioms is any subset of the set of all formulas, and derivation rules are 
relations on formulas of arity greater than 1. If ξ  is a derivation rule and 

),,...,( 1 BAA nξ  is true, then we say that formula B is immediate consequence of 

formulas nAA ,...,1  by the ruleξ . 

The proof in the given predicate theory T  is a finite sequence of formulas where 
each formula is either axiom of T , or it can be derived from some preceding 
formulas by any derivation rule. 

2 Input Format 
The main difficulty lies in the fact that most of classical logics do not have a finite 
set of axioms. For instance, the classical propositional calculus has the following 
axioms: 

)( ABA →→ , ))()(())(( CABACBA →→→→→→  
and )()( BAAB →→¬→¬ , where A , B  and C  are arbitrary propositional 
formulas, so we have a countable (thus infinite) set of axioms. Since we want to 
treat the classical logics as well, we have to deal with the meta formulas (such as 
the above schemata) as well. 



Back to the format of the input file: We have the following keywords and special 
symbols: 

• The commands for the meta identifiers: \function_variable, 
\constant_variable, \relation_variable, \variable_variable, 
\term_variable, \formula_variable. For instance, the command 
\function_variable{X} has the following effect: the value of the identifier 
X ranges over functional symbols. 

• Identifiers (variables, functional, relational and constant symbols): 
\variable, \constant, \function, \relation, \term. 

• Other commands: \axiom, \bounded, \free, \term, \substitution, \relation, 
\rule. 

• Special symbols: ~   /\   \/   =>   <=>   {   }   (   )   ,   = 

There are no reserved words. The identifiers are nonempty sequences of letters, 
digits and underscore symbols starting with letter or underscore symbol. The 
syntax is case sensitive. All white spaces and their sequences are equivalent to one 
space symbol. 

The input file with theory description is an ASCII file containing a sequence of 
commands of the form 

\constant|{identifier} 

\variable|{identifier} 

\function| {identifier}{arity} 

\relation|{identifier}{arity} 

\constant_variable|{identifier} 

\variable_variable|{identifier} 

\function_variable|{identifier}{arity} 

\relation_variable{identifier}{arity} 

\term_variable|{identifier} 

\formula_variable{identifier} 

\axiom{identifier}{description of formula}{conditions} 

\rule{identifier}{arity}{description of formula}{conditions} 

The conditions are commands of the form \free(x,A), 

\bounded(x,A), 

\partially_substituted(A,x,t,B) 



separated by commas, where A and B are formulas or variables for formulas, x is a 
variable or a variable for variables and t is a term or a variable for terms. For 
instance, the meaning of the last command is that the formula A can be obtained 
from the formula B by replacing any free occurrence (not necessary all of them) of 
the variable x by term t, where all replacements are regular. 

Input file which contains the (potential) proof is an ASCII file with nonempty 
sequence 

of descriptions of formulas separated by ";" without variables for constants, 
variables, functional 

symbols, terms and formulas. Description of formula is given in the usual 
mathematical syntax 

(possibly) with the using of the command \substitution (A,x,t), 

where A is any formula or a variable for formulas, x is any variable or a variable 
for variables, and t is any term, or any variable for constants or any variable for 
terms. 

3 The Syntax Correctness 
We shall present an algorithm for checking the syntax correctness of the given 
predicate formula by transforming it into a postfix form. We have two recursive 
procedures: for the extraction of a first term (from left to right) from the given 
string and writing its postfix form, and for the transformation of the given formula 
into a postfix form. To simplify notation, by term unit we shall call variables, 
constant symbols, variables for variables, variables for terms and variables for 
constant symbols. 

The “postfix form of a term” algorithm 

Input: a sequence S  of tokens (possibly empty). If nm < , then we assume that 
the sequence mn ss ,...,  is empty. 

Output: a sequence nk ss ,...,  of the tokens that are not scanned yet; an error 
report; as a side effect, an appending in the global variable Postfix of the postfix 
form of the first subterm (from left to right) of the given sequence. 

• If S  is empty, then the procedure halts with an error report. 

• If 1s  is a term unit, then append 1s  in Postfix and return the rest of the S . 

• If 1s  is neither a term unit nor a functional symbol, then the procedure halts 
with an error report. 



• If 1s is a functional symbol (or a variable for functional symbols) and 2s  is 
not a left bracket, then the algorithm halts with an error report. 

• If 1s  is a functional symbol of arity k  (or a variable for functional symbols 

of arity k ), and 2s  is a left bracket, then: 

(1) Initialize i  to 1. 

(2) Recursively call the function with the sequence nss ,...,3  as input. If 
the return of the recursive call is an error report, then the procedure 
halts with an error report. Otherwise let us denote the returned string 
by lss ,...,1 . 

(3) If 1<l  then the procedure halts with an error report. 

(4) If ki < and 1s  not equal to “,” or if ki = and 1s  differs from “)”, 
then the procedure halts with an error report. 

(5) If ki < then increment i  by 1 and go to step (2). Otherwise, append 
scanned functional symbol/variable for functional symbols in Postfix. 

The “postfix form of a formula” algorithm 

Input: a sequence S  of tokens (possibly empty). If nm < , then we assume that 
the sequence mn ss ,...,  is empty. 

Output: a sequence nk ss ,...,  of the tokens that are not scanned yet; an error 
report; as a side effect, an appending in the global variable Postfix of the postfix 
form of the first subformula (from left to right) of the given sequence. 

• If S  is empty, then the procedure halts with an error report. 

• If  1s  is a variable for formulas, then append it in Postfix and 

return nss ,...,2 . 

• If 1s  is a term unit, or a functional symbol, or a variable for functional 
symbols then: 

o Call the “postfix form of a term” procedure with the same input. On 
error report the procedure halts with an error report. Otherwise, let us 
assume that the return is a sequence lss ,...,1 . 

o If 1s  differs from “=”, the procedure halts with an error report. 



o Call the “postfix form of a term” procedure with input lss ,...,2 . On 
error report the procedure halts with an error report. Otherwise, 
append “=” in Postfix and return the same sequence as the “postfix 
form of a term” procedure. 

• If 1s  is equal to “~” then recursively call this same procedure with the 

sequence nss ,...,2  as input. On error report the procedure halts with an 
error report. Otherwise append “~” in Postfix and return the same sequence 
that is returned from the recursive call. 

• If 1s  equals to “(“ then: 

o Recursively call this same procedure with the sequence nss ,...,2  as 
input. On error report the procedure halts with an error report. 
Otherwise, let us assume that the returned sequence is lss ,...,1 . 

o If 1<l  or 1s is not a binary logical connective, then the procedure 

halts with an error report. If not, memorize 1s . 

o Call this same procedure with lss ,...,2  as input. On error report the 
procedure halts with an error report. Otherwise, let us assume that 
the returned sequence is mss ,...,1 . 

o If 1<m  or 1s differs from “)”, the procedure halts with an error 
report. Otherwise append the memorized connective in Postfix and 
return the sequence mss ,...,2 . 

• If 1s is a quantifier then: 

o Memorize it. 

o In 2<n  or 2s  is neither a variable nor a variable for variables, then 

the procedure halts with an error report. Otherwise memorize 2s . 

o Recursively call this same procedure with the sequence nss ,...,3  as 
input. On error report the procedure halts with an error report. 
Otherwise, append in Postfix first the memorized variable, then the 
memorized quantifier, and return the same sequence that is returned 
from the recursive call. 

• If 1s  is a relational symbol (or a variable for relational symbols) and 2s  is 
not a left bracket, then the procedure halts with an error report. 



• If 1s  is a relational symbol of arity k (or a variable for a relational symbol 

of arity k ) and 2s  is a left bracket, then: 

(1) Initialize i  to 1. 

(2) Call the “postfix form of a term” procedure with the sequence 

nss ,...,3  as input. If the return of the call is an error report, then the 
procedure halts with an error report. Otherwise let us denote the 
returned string by lss ,...,1 . 

(3) If 1<l  then the procedure halts with an error report. 

(4) If ki < and 1s  not equal to “,” or if ki = and 1s  differs from “)”, 
then the procedure halts with an error report. 

(5) If ki < then increment i  by 1 and go to step (2). Otherwise, append 
scanned relational symbol in Postfix. 

• If 1s  is the operator \substitution and 2s  is not a left bracket, then the 
procedure halts with an error report. 

• If 1s  is the operator \substitution and 2s  is a left bracket, then: 

(1) Recursively call this same procedure with the sequence nss ,...,3  as 
input. On error report the procedure halts and returns an error report. 
Otherwise let us denote the returned sequence by lss ,...,1 . 

(2) If  4<l  or at least one of 1s and 3s  differs from “,”, or 2s  is not a 
variable (or a variable for variables), then the procedure halts with an 
error report. Otherwise, append the scanned variable in Postfix. 

(3) Call the “postfix form of a term” procedure with the sequence 

lss ,...,4  as input. On error report the procedure halts with an error 

report. If not, let us denote the returned sequence by mss ,...,1 . 

(4) If 1<m  or 1s  differs from the right bracket, then the procedure 
halts with an error report. If not, append \substitution in Postfix and 
return mss ,...,2 . 



4 The Pattern Matching 
In this section we shall present the procedure that checks whether the given 
formula B  is an instance of the given axiom A  or not. We shall give the detailed 
algorithm for the propositional case. The predicate case is much more complicated 
(and lengthy as well), so we shall give just the brief sketch of that case. 

The first subterm procedure 

Input: a propositional formula in postfix form. 

Output: the first subtrerm (from right to left) of the given formula 

• Initialization: Counter = 0, List = empty. 

• If the scanned token is a binary connective, then we increase Counter by 1, 
append the token in List and scan the next token. 

• If the scanned token is the negation, then we scan the next one. 

• If the scanned token is propositional letter, then we append the token in List 
and decrease Counter by 1. If Counter = 0, then the procedure halts and 
returns List, otherwise we scan the next token. 

Propositional pattern matching 

Input: a pattern A (i.e. a Boolean combination of formula variables), and a 
propositional formula B . 

Output: YES, if the formula B is an instance of the pattern A ; NO otherwise. 

• Transform A and B  into postfix form and then start to scan them 
simultaneously token by token from right to left. 

• The scanned token of the pattern A is a logical connective. If the scanned 
token of the formula B  is not the same connective, then the matching is 
impossible, so the procedure returns NO. In the case of matching we scan 
the next token in both formulas. The algorithm halts and returns NO if one 
of A and B  is exhausted by the scanning process and the other is not. If 
both A and B  are scanned, the procedure returns YES. 

• The scanned token of the pattern A is a letter. Then we extract the 
subformula of the formula B which starts with the current scanned token 
of B , and then we set the condition: letter = subformula. The procedure 
returns NO if this condition contradicts some of earlier introduced 
conditions. On soundness we scan the next token of A and the first token 
of B (from right to left) which doesn’t belong to the extracted subformula. 
The algorithm halts and returns NO if one of the formulas is exhausted by 
the scanning process and the other is not. If both formulas are scanned, the 
procedure returns YES. 



The pattern matching procedure for the predicate case is recursive one and has 
several subprocedures such as term matching, determination of propositional 
structure of the given predicate formula, matching of propositional structures and 
unification in the presence of substitution. 

5 The Proof Correctness 
In this section we shall present the main algorithm, i.e. the integration of 
previously described procedures. 

Input: a representation of a predicate theory and list of predicate formulas. 

Output: YES, if the given list represents a proof in the given predicate theory; NO 
otherwise. 

(1) Transform given formulas into postfix form. On any occurrence of syntax 
incorrectness the algorithm halts. If each formula is correct, then form a sequence 
from the list of formulas which are not axioms. Let m be a length of the formed 
sequence and let nA  be the n-th formula of the sequence. 

(2) n=0 

(3) Output = YES 

(4) If m=n, then the algorithm halts. Otherwise, increase n by 1 and do the 
following: 

Check whether nA  is an instance of an axiom or not. If the answer is positive, go 

to (4). Otherwise, check whether nA  can be obtained from preceding members of 
the sequence by any derivation rule or not. If the answer is positive, then go to 4. 
Otherwise, change the value of Output into NO and stop the algorithm. 

6 Further Research 
We plan to modify presented proof checker to wide class of logics. This 
modification can be used not only for verification of formal proofs in some 
classical formal systems (such as first order predicate logic, modal logic, Heyting 
algebra etc.), but also for an analysis of natural languages. 

Our main goal is to develop similar procedures for the information bearing 
structures such as music scores representation and sequences in molecular biology, 
since both can be treated as syntax forms and there is a need of finding an 
adequate similarity criteria (or developing some sort of invariance theory) for such 
forms. 
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