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Abstract: This paper discuss mainly issues related for modeling decision making under 
uncertain, vagueness, risky and imprecise information. There will be presented a 
description of five ordinal methods for modeling decision making under uncertainty in the 
context of linguistic data: Possibilistic Decisisonmaking, Revised Possibilistic 
Decisisonmaking, Commensurate L-Fuzzy Risk Minimization, Fuzzy relational Ordinal 
Risk Minimization, and Quadratic Ordinal Psychophysical Optimization. Finally, these five 
techniques are illustrated using a single example. 
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1 Decision Making and Decision Analysis 

A decision analysis problem arises when we must choose between two or more 
alternative actions whose outcomes depend on which one of a collection of 
possible states of nature is the actual state. If it is possible to assign a well-defined 
subjective (or objective) probability distribution to the states of nature and to 
assign a numerical utility score measured on an interval scale to the outcome of 
each state-action pair, then we can compute the expected utility of each action and 
pick the action whose expected utility is greatest or disutility is least, Probabilities 
measured on a ratio scale are multiplied times utilities measured on an interval 
scale; adding the results for a given action gives expected utility measured on the 
same interval scale as the individual utilities. While this method makes no 
guarantees for any one decision, financial portfolio theory and the law of large 
numbers imply that a lifetime of making decisions by this rule has a very high 
probability of generating a higher lifetime utility than using any other rule when 
the scale assumptions are met. From a standpoint of computational theory of 
perception of "computing with words", this method begins by converting the 
natural perceptions of how usual or unusual the possible states are into probability 
estimates on a ratio scale, and converting the natural perceptions of how 
acceptable or unacceptable the possible outcomes of state-action pairs are into 
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utility numbers on an interval scale using Von Neuman-Morgenstern utility theory 
or some similar method. A direct generalization of this is to use fuzzy numbers for 
probabilities and utilities, computing a fuzzy expected utility for each action by 
the extension principle of fuzzy mathematics. Since natural perceptions of usuality 
and acceptability are more likely to be in the form of words than numbers, the 
fuzzy method has the advantage of a more natural representation. 

2 Methods for Modeling Decisionmaking 

However, sometimes it is not reasonable to assume that the perceived usuality of 
the states of nature can be converted to a ratio scale of probability, even a fuzzy 
one, without excessive distortion. Similarly, sometimes it is not possible to assign 
utility scores on an interval scale, crisp or fuzzy, to adequately represent the 
perceived acceptability or unacceptability of outcomes. In such a case, it is 
necessary to rely on the ordinal properties of the perceived usuality and 
acceptability. 

One method, widely used in practice even if frowned upon i theory, is to ignore 
the uncertainty about the states of nature, and base the decision entirely on the one 
state that is the most usual or likely one. Obviously, the appropriateness of this 
approach is directly proportional to the degree to which usuality is in fact 
concentrated in one state of nature. 

Another ordinal method represents the attractiveness of each alternative action by 
the least desirable outcome for that action. The alternative selected is the one for 
which this worst-case value is most acceptable or least unacceptable. 

The above two ordinal methods consider either the maximal usuality alone or the 
maximal disutility alone. The remainder of this paper is concerned with methods 
that try to capture the extremes of both utility and possibility within the confines 
of ordinal calculation. 

2.1 Possibilistic Decisionmaking 

The method of "possibilistic decisionmaking" which represented utility as 
membership in the fuzzy set of good outcomes and usuality as membership in the 
fuzzy set of possible states of nature. It was proposed by Yager. The potential 
utility of a state-action outcome is its membership in the fuzzy set of outcomes 
that are both possible and good, calculated as the minimum of the membership of 
the outcome in "good" and the state in "possible". The attractiveness of an action 
is then taken as the greatest potential utility of any of its possible outcomes. The 
choice of action is made by taking the alternative whose attractiveness is greatest. 



2.2 Revised Possibilistic 

Whalen pointed out that Yager's approach treated choice nodes and chance noder 
the same way, maximizing in both cases, and suggested an algorithm known as 
"revised possibilistic decisionmaking" that measured the disutility of each state-
action outcome rather than its utility. The threat of a particular state-action 
outcome is its membership in the fuzzy set of outcomes that are both possible and 
bad, found by minimization; the risk of an action is the greatest threat of its 
possible outcomes. The choice of action is made by taking the alternative whose 
risk is least. Both of these varieties of possibilistic decisionmaking were 
introduced assuming that set memberships follow a complete weak order, 
represented without loss of generality by numbers in the unit interval. Thus, the 
nuances of natural perceptions of likelihood and acceptability were rapidly lost. 

2.3 Commensurate L-Fuzzy Risk Minimization 

The next stage in generalization is the use of L-fuzzy (variously rendered "lattice 
fuzzy" of "linguistic fuzzy") sets for bad outcomes and possible states, with set 
memberships defined on an incompletely ordered abstract lattice. If all 
memberships are measured on a common lattice, it is still possible in principle to 
take the minimum of the membership of a state-action outcome in the L-fuzzy set 
of bad outcomes and the membership of the corresponding state in the L-fuzzy set 
of possible states. But since the ordering is incomplete, it is not always possible to 
find an explicit minimum or maximum. Furthermore, it may not be meaningful to 
compare the membership of a state in the set of usual states with the membership 
of an outcome in the set of bad outcomes, since the two are qualitatively so 
different. The Commensurate L-Fuzzy Risk Minimization technique deals with 
this by placing usuality set memberships on one incompletely ordered lattice and 
disutility set memberships on a separate incompletely ordered lattice. The version 
presented in uses an ordered pair to specify the membership of a state-action 
outcome in the set of outcomes that are both possible and bad. The risk of an 
alternative action is found by symbolically maximizing these pairs similarly to the 
way the previous method maximizes unresolved minima; the selected action is the 
one for which this symbolic structure is least risky. Recognizing that this process 
is not highly decisive, the method successively falls back to the L-fuzzy approach 
with a common incomplete lattice, and the revised possibilistic approach with a 
single complete weak order of membership grades. 

2.4 Fuzzy Relational Ordinal Risk Minimization 

Whalen & Schott have suggested an approach to commensurate ordinal decision 
making based on recent insights in knowledge granulation, computing with words, 
fuzzy relations as fuzzy x-y graphs, and second order fuzzy sets. In this approach, 



the disutility of a state-action outcome is represented by a linguistic variable. The 
base values of this linguistic variable may be well-defined utility numbers, or they 
may be a purely abstract ordered set. The usuality of a state is similarly 
represented by a linguistic variable defined on a base variable of degrees of 
possibility. 

The second order fuzzy threat of a state-action pair   is s second order 
fuzzy set of disutilities. The membership of a disutility base value x in this set is 
itself a (first-ordet) fuzzy set of possibilities 
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The second order fuzzy risk profile of an action, , is a second order fuzzy 
set of disutilities formed by the union of the fuzzy relations corresponding to the 
threat of all the state-action pairs for that action. The possibility that the disutility 
of a given action is x is a fuzzy set of possibilities formed as the union of the fuzzy 
possibility that each possible outcome has disutility x. This is equivalent to a fuzzy 
x-y graph for each action; the knowledge granules making up this graph have 
fuzzy coordinates defined by the disutility (x) and usuality (y) of the possible 
outcomes. 
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The first order fuzzy risk profile of an action, , is created from the action' s 
second order risk profile using a Sugeno integral. The first order possibility that 
the disutility of an action is x is the maximum over possibility grades (0 to 1) of 
the minimum of each possibility grade with its membership in the second order 
possibility that the disutility of the action is x. 
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The linguistic risk assessment is the final stage in the process, found by 
converting the first order fuzzy risk profile of each alternative action back into 
words. This allows the user to exercise judgment as to what action should be 
chosen and what rhetorical argument to use to justify that choice. Wenstop's 
classic approach to linguistic approximation does not work well for this purpose 
because the possibility distributions tend to be multimodal, so a method based on 
linear integer programming is used instead. Future research will evaluate the 
effectiveness of genetic algorithms and other methods for linguistic approximation 
in the context of risk minimization using computing with words. 

2.5 Quadratic Ordinal Psychophysical Optimization 

Whalen and Wang apply quadratic programming to an ordinal interpretation of 
linguistic probability and utility terms. This interpretation incorporates a well-
established finding of psychophysics: the degree to which stimuli must differ 
physically to be discerned perceptually is proportional to the magnitude for the 
stimuli according to logarithmic law of human (and animal) perception. If the 
utility of each state-action pair is known only roughly, for instance as "good", 
"fair", or "poor", we will represent this ordinally; each fair utility is greater than 
any poor utility and less than any good utility. Over a century of research in the 
field of psychophysics indicates a very strong tendency for human perception to 
operate on a logarithmic scale, in which the "just noticeable difference" between 
stimuli is a constant proportion of the magnitude of the stimulus rather than a 
fixed incremental amount. Based on this, we require that each "fair" utility is 
greater than or equal to a fixed constant called the distinguishability ratio times 
any "poor" utility, and each "good" utility is greater than or equal to the same 
fixed constant times any "fair" utility. The distinguishability ratio is a 
generalization of the psychophysical concept of a decibel. To represent the fact 
that two quantities with the same rough description need not be identical as long 
as their difference is not psychologically significant, the quantitative 
representation of each "fair" utility must be less than or equal to the 
distinguishability constant times that of every other "fair" utility, and similarly 
among "good" and "poor". This automatically entails that each utility in a class is 
also greater than or equal to any other utility divided by the distinguishability 
ratio. If the probability of each state is specified numerically, then the overall 
utility of an action is the sum of the unknown numeric representations of the 
utility of each of the action's state-action pairs, weighted by the numerical 
probability weights. This is a linear function with linear inequality constraints; 
thus, it is possible to find the maximum and minimum overall utility for each 
action by linear programming. More importantly, we can find the minimum and 
maximum difference between the overall utility of two actions. Alternative A 



dominates Alternative B  if max{utility(A)}<0; it is not sufficient that 
max{utility(A)}> max{utility(B)} and min{utility(A)}>min{utility(B)}, but 
Alternative A can dominate alternative B even if 
max{utility(B)}>min{utility(A)}. 

A dominated action can be removed from consideration, leaving a short list of 
nondominated actins. These can be re-analyzed in several ways. One can use a 
finer grid of linguistic terms like "very low" or "upper medium" and repeat the 
analysis. One can also introduce additional inequalities into the linear 
programming formulation. For example, there may be two actins that both 
generate "low" utility in a particular state, but further introspection and/or 
economic analysis may indicate one is discernibly lower than the other. Finally, 
one can move to methods that are more decisive than the ordinal ones, but which 
require stronger assumptions. If the utility of each state-action pair is specified 
numerically but the probability of the different attributes is only specified roughly, 
the linear programming problem is very similar to the one described above. If 
utility is known only as good, fair, poor and probability is known only as low, 
medium, high, finding the maximum and minimum of the difference between two 
alternative actions, and thus identifying dominated alternatives, becomes a 
problem in quadratic programming. The difference in overall utility of between 
action i and action  j  is a weighted sum, 
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in which each term is the product of two variables, the utility of action i in state k 
and the unknown probability, where these variables U•• and P• are subject to a set 
of linear inequality constraints. If the maximum value of the quadratic function 
Dij, subject to the linear constraints, is negtive then action dominates action i. 

3 Example for Illustration 

To illustrate the four ordinal approaches discussed above, here is a simple abstract 
decision problem in which utility is granulated to good, fair, and poor, and 
usuality is granulated to usual, plausible, and rare. If there are just three states of 
nature, assessed as a usual state, a plausible state, and a rare state, there are six 
possible risk profiles without ties in utility. In the illustrative example, we will 
compare some alternative actions. 

 

 

 



Table 1 
Linguistic Utility & Probability 

Actions: Usual State Plausible State Rare state 
A1 good fair poor 
A2 good poor fair 
A3 fair good poor 
A4 fair poor good 
A5 poor good fair 
A6 poor fair good 

3.1 Commensurate L-Fuzzy Risk Minimization 

For this method, we assume that low, medium, high disutility and usual, plausible, 
rare usuality are on two separate scales, Table 2. 

In this case, actions A1, A2 and A3 are difficult to rank among themselves without 
additional information, but all three are discernibly better than A4, while A5 and 
A6 are the two least attractive alternatives. 

Table 2 
Commensurate L-Fuzzy Risk Minimization 

 Usual State Plausible State Rare state Overall Risk 
A1 (low, usual) (medim, 

plausible) 
(high, rare) (low, usual) or 

(medium, plausible) or 
(high, rare) 

A2 (low, usual) (high, plausible) (medium,rare) (low, usual) or 
(high,plausible) 

A3 (medium, 
usual) 

(low, plausible) (high, rare) (medium, usual) or 
(high,rare) 

A4 (medium, 
usual) 

(high, plausible) (low, rare) (medium, usual) or 
(high, plausible) 

A5 (high, usual) (low, plausible) (medium, rare) (high, usual) 
A6 (high, usual) (medium, 

plausible) 
(low, rare) (high, usual) 

3.2 Fuzzy Relational Ordinal Risk Minimization 

Suppose that low, medium and high disunity are represented by the following 
vectors giving the compatibility of utility base variable scores with membership 
grades shown in Table 3. Also suppose that rare, plausible, and usual have the 
same vector representations, respectively, though of course applying to possibility 
base vlues rather than disutility. Then the three second-order fuzzy sets 
representing the three threats associated with action A2 are as shown in Tables 4, 
5 and 6. 



Table 3 
Membership Functions for Fuzzy Disutilities 

1 0.75 0.5 0.25 0 0 0 0 0 low 
0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 medium 
0 0 0 0 0 0.25 0.5 0.75 1 high 
0 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1 disutilities 

Table 4 
Second-Order Fuzzy Threat of (low, usual) 

Disutility: 

Poss 

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 
0.000 0 0 0 0 0 0 0 0 0 
0.125 0 0 0 0 0 0 0 0 0 
0.250 0 0 0 0 0 0 0 0 0 
0.375 0 0 0 0 0 0 0 0 0 
0.500 0 0 0 0 0 0 0 0 0 
0.625 0.25 0.25 0.25 0.25 0 0 0 0 0 
0.750 0.5 0.5 0.5 0.25 0 0 0 0 0 
0.875 0.75 0.75 0.5 0.25 0 0 0 0 0 
1.000 1 0.75 0.5 0.25 0 0 0 0 0 

to the fuzzy set of possibilities compatible with disutility .625 in the risk profile of 
Action A2. This is because: 

 possibility .250 belongs 0% to the fuzzy set of possibilities compatible 
with disutility .625 in the fuzzy threat of (low, usual) associated with the 
usual state and action A2 (Table 4), 

 possibility -250 belongs 25% to the fuzzy set of possibilities compatible 
with disutility .625 in the fuzzy threat of (high, plausible) associated with 
the plausible state and action A2 (Table 5), 

 possibility .250 belongs 50% to the fuzzy set of possibilities compatible 
with disutility .625 in the fuzzy threat of (medium, rare) associated with 
the rare state and action A2 (Table 6), 

The first-order risk profile of action A2, found by Sugeno integral, is shown in 
Table 8. 

Table 8 
First-Order Fuzzy Risk Profile of Action A2 

Disutility: 
 

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 
Poss. 1.000 0.750 0.500 0.250 0.250 0.250 0.500 0.625 0.625 

 



Table 5 
Second-Order Fuzzy threat of (high, plausible) 

Disutility: 

Poss 

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 
0.000 0 0 0 0 0 0 0 0 0 
0.125 0 0 0 0 0 0.25 0.25 0.25 0.25 
0.250 0 0 0 0 0 0.25 0.5 0.5 0.5 
0.375 0 0 0 0 0 0.25 0.5 0.75 0.75 
0.500 0 0 0 0 0 0.25 0.5 0.75 1 
0.625 0 0 0 0 0 0.25 0.5 0.75 0.75 
0.750 0 0 0 0 0 0.25 0.5 0.5 0.5 
0.875 0 0 0 0 0 0.25 0.25 0.25 0.25 
1.000 0 0 0 0 0 0 0 0 0 

Table 6 
Second-Order Fuzzy Threat of (medium, rare) 

Disutility: 

Poss 

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 
0.000 0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 
0.125 0 0.25 0.5 0.75 0.75 0.75 0.5 0.25 0 
0.250 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0 
0.375 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 
0.500 0 0 0 0 0 0 0 0 0 
0.625 0 0 0 0 0 0 0 0 0 
0.750 0 0 0 0 0 0 0 0 0 
0.875 0 0 0 0 0 0 0 0 0 
1.000 0 0 0 0 0 0 0 0 0 

The second-order fuzzy risk profile of action A2 is represented by the union of 
these three second-order fuzzy sets: 

Table 7 
Second-Order Fuzzy risk Profile of Action A2 

Disutility: 

Poss 

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 
0.000 0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 
0.125 0 0.25 0.5 0.75 0.75 0.75 0.5 0.25 0.25 
0.250 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.375 0 0.25 0.25 0.25 0.25 0.25 0.25 0.75 0.75 
0.500 0 0 0 0 0 0.25 0.5 0.75 1 
0.625 0.25 0.25 0.25 0.25 0 0.25 0.5 0.75 0.75 
0.750 0.5 0.5 0.5 0.25 0 0.25 0.5 0.75 0.75 
0.875 0.75 0.75 0.5 0.25 0 0.25 0.25 0.25 0.25 
1.000 1 0.75 0.5 0.25 0 0 0 0 0 



Conclusions 

As an illustrative example, the entry 0.75 in the row for .250 possibility and 
column for .625 disutility in Table 9 means that the possibility .250 belongs 50% 
linguistic aporoximator is under development, but ths suffices for an initial 
demonstration. The linguistic approximations to the risk profiles of the six 
alternative actions are as follows: 

 A1: low or possibly (lower medium or upper medium)đ 

 A2: low or high 

 A3: medium or possibly low 

 A4: medium or possibly low 

 A5: high or low 

 A6: high or possibly (lower medium or upper medium) 

Action A1 seems to be indicated by this output; however, the user has more 
flexibility to construct and evaluate alternative theoretical arguments for and 
against various action, combining the output of the method with orther 
information. Thus, computing with words is well suited here to a decision support 
application rather than an automated decision mechanism. 
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