
How to Implement FSQL and Priority Queries

Aleksandar Takači, Srđan Škrbić
Faculty of Technology, Faculty of Natural Sciences
University of Novi Sad
atakaci@uns.ns.ac.yu, shkrba@uns.ns.ac.yu

Abstract: Intelligent databases are a developing field since the early nineties. Using fuzzy
numbers to model imprecise information is a well-known concept. In this paper, we will
show how to implement FSQL queries that can also handle priority. FSQL is actually a
superset of SQL, thus queries that deal with fuzzy values need to be pre and post processed.
We will only sketch some technical aspects of the on-going implementation process.

Keywords: intelligent databases, FSQL, priority

1 Introduction

An intelligent database system combines the functionality expected from a
database system with better semantic support: new data models and, as a
consequence, new functionalities. This paper deals with the application of fuzzy
logic in a relational database environment. A fuzzy relational data model can be
used to represent impreciseness in data values. One of the concepts used to model
imprecise and uncertain information are fuzzy numbers and fuzzy quantities. As it
is well known fuzzy numbers and quantities are used to model information of type
“approximately 10” and “tall people”. In this paper we will not discus technical
details of the storing updating and deleting values from fuzzy relational databases
(FRDB). Our focus will be on FSQL i.e. how to handle queries on FRDB. In
addition, we will incorporate priority into our queries, which is our contribution to
state of the art, because many other authors have implemented FSQL. This will be
done by using a Priority Fuzzy Constrain Satisfaction Problem (pFCSP) obtained
from [4].

2 Preliminaries

2.1 Fuzzy Sets and Fuzzy Logic

First, we will give a well-known definition of fuzzy sets.

Definition 2.1 A fuzzy subset P of a universe X is described by its membership
function . The value of the membership function denoted by

 in the point x is a membership degree of the element x in the fuzzy set P.

[0,1]X:Pµ →

(x)Pµ

If a fuzzy set has a continuous unimodal (up to a point non-decreasing, then non-
increasing) membership function it is called a fuzzy quantity. Fuzzy quantities are
used to represent linguistic labels such as “tall people”, “average salary”, and
“small tip”. Special kind of fuzzy quantities are fuzzy numbers.

A fuzzy set that is convex, normalized and has a limited kernel is called a fuzzy
number (see Figure 2.1). If a fuzzy number is upper-continuous and has a limited
support then it is an L-R fuzzy number or fuzzy interval. L-R fuzzy numbers are
denoted by (L,R,F,G) where L and R are endpoints of the kernel interval [L;R] and
F and G are functions that describe the shape of the fuzzy number left and right of
the kernel interval [L,R] respectively. If F and G are linear functions then we have
a trapezoidal fuzzy number that we can denote (L, ML, MR, R). If L = R then we
have a triangular fuzzy number with the notation (L, M, R) (see Figure 2.1)

Figure 2.1

In fuzzy logic, t-norms are used as a conjunction operator. They are obtained from
the following definition.

Definition 2.2 A mapping is called a t-norm if the following
conditions are satisfied for all

[0,1]2[0,1]:T →
:[0,1] zy,x, ∈

 (T1) T(x, y) = T(y, x)
 (T2) T(x, T(y, z)) = T(T(x, y), z)
 (T3) if y ≥ z then T(x, y)≥ T(x, z)
 (T4) T(x, 1) = x.

The most common t-norms are the minimum,

the product, and the Lukasiewicz t-norm.

Similarly, t-conorms are used as a disjunction operator. For more information on t-
norms see [1].

y)min(x,y)(x,Tm =

xyy)(x,Tp = 1,0)-ymin(xy)(x,TL +=

Definition 2.3 A mapping is called an s-norm or a t-conorm if
the following conditions (T1), (T2), (T3) from the previous definition and the
condition (S4) are satisfied for

[0,1]2[0,1]:S →

[0,1] zy,x, ∈ .

(S4) S(x, 0) = x.

The most common t-conorms are the maximum,

probabilistic sum and the Lukasiewicz
S-norm or truncated addition.

 y)max(x,y)(x,SM =

xy -yxy)(x,SP += y,1) min(xy)(x,SL +=

Since t-norms and t-conorms are associative, they can easily be extended to n-ary
operators. For more information on t-norms see [1].

2.2 Priority Fuzzy Constraint Satisfaction Problem

The pFCSP have evolved from constraint satisfaction problems (CSP). First, fuzzy
values of a constraint have been introduced into CSP's and fuzzy constraint
satisfaction problems (FCSP) were obtained. Constrains are model as fuzzy sets
over a particular domain. The global satisfaction degree is obtained by aggregating
the values of each constraint. Adding the concept of constraint priority to FCSP,
we obtain pFCSP.

Each constraint is modeled as a fuzzy number. The membership degree of each
constraint value indicates the local degree to which the constraint is satisfied with
a compound label. In order to obtain the global satisfaction degree, local degrees
are aggregated together with the priority of each constraint. In order for a system
to be a pFCSP, it needs to satisfy some axioms. For more details on axioms, see
[2]. A system that is a pFCSP is given in the following definition:

Definition 2.4 Let be the set of constraints. Let be the

local satisfaction degree of constraint and be the priority of constrain .
Then the global satisfaction degree in is a pFCSP is obtained by using this
formula:

{ niCC i K1, ∈= } ic

iC ip iC

{ }),,1),,((nipcST iiPL K∈=α

2.3 Fuzzy Relational Databases and FSQL

The relational model uses a collection of tables to represent data and relationships
among those data. In our model, data values need not be exact. We can handle
imprecise and uncertain information using fuzzy numbers and quantities. First, for
each attribute we specify weather it can have fuzzy values or not. Obviously, keys
cannot have fuzzy values. Fuzzy numbers are linguistic labels on the domain of
the attribute e.g. “tall people” and “average salary”. Before using a linguistic label,
it needs to be predefined. Besides linguistic labels our attributes can have interval
values from the domain e.g. "height= [173,180]".

SQL is the most influential commercially marketed database query language. It
uses a combination of relational algebra and relational calculus constructs to
retrieve desired data from a database (see [3]). FSQL is SQL that can handle fuzzy
attribute values. The main difference between SQL and FSQL is that SQL returns
a subset of the database as the query result. When attributes with fuzzy values
appear in the query, it is transformed into a query that can be handled by SQL and
finally results obtained from the SQL query are then post processed in order to
obtain the desired information. More details are given in the following section.

3 Processing FSQL Queries

First, we will give the syntax of our FSQL query.

SELECT atributeList

FROM tableNameList

[WHERE conditionList]

[GROUP BY atributeList

HAVING conditionList]

[TRESHOLD number]

We will discuss the case when in the WHERE condition list fuzzy values appear
without the GROUP BY clause. The idea is to push fuzzy attributes that appear
together with the AND operator in the WHERE clause, up into the SELECT
clause. When fuzzy attributes appear together with the AND operator in the where
clause, they are pushed up into the SELECT clause. Take an example:

SELECT name

FROM students

WHERE height="tall" AND age="young" AND name="Peter"

This query is transformed into

SELECT name, age, height

FROM students

WHERE name="Peter"

If it is possible to isolate the non-fuzzy conditions, they are put into the
transformed SQL query. Then this transformed query runs on the database
returning a data set as the result. Then this data set is post-processed by counting
the values of the remaining conditions. Each dataset gets a value in the unit
interval, which is actually its satisfaction degree of the query, and they are
displayed in the result. If the threshold clause is active then the rows in the dataset
with smaller satisfaction degrees are cut i.e. they are not displayed in the result.

In case of the OR, NOT operator we cannot do much but process the SQL query
without conditions and then check each condition whether it is fuzzy or not.

One of the main technical aspects of the implementation is how do we obtain the
satisfaction degree for each row in the data set. If we have more that one condition
connected by AND, OR operators we need to calculate satisfaction degrees for
each condition separately and then these local satisfaction degrees are aggregated
using t-norms in case of the AND operator and t-conorms in case of the OR
operator.

When we count the local satisfaction degree of each constraint many cases can
appear. Our calculations are based on the surface intersection method for
determining the compatibility of fuzzy sets. First, we will consider the case when
in the condition a crisp attribute value appears e.g. "AGE=25". Obviously when
there is a crisp value in the database, there is no problem. On the other hand, if
there is an interval value in the database we return the probability that if the value
is in the interval it is actually equal to our crisp value. This value is actually
counted depending of the precision of our crisp data e.g. if integer is the domain
the probability that "age=25" if the age is in the interval [24, 26] is 1/3. Finally, if
the data value is a fuzzy number or quantity the result is calculated by determining
the compliance of the set determined from our crisp value with the fuzzy quantity
ex. "age=25" transforms into [24.5,25.5] complies with "young" 0.1.

If the value of the fuzzy attribute in the query is an interval value, we have also
three cases. First, if the data value is crisp the satisfaction degree is one. Then, if
the data value is the interval we count the result using the formula

(A)length
 B) (A length degree ∩

=

e.g. "age= [24, 26]" has the satisfaction degree of 0.5 of the condition "age= [25,
27]". Finally, if the data is a fuzzy quantity we transform the interval into a fuzzy
set and then counts the compliance degree.

The most interesting case in the queries will be when the value of the fuzzy
attribute is a fuzzy quantity. If the value of the data is crisp then the satisfaction
degree is actually the membership degree of that value. If the value is an interval it
is transformed in a uniformly distributed fuzzy number where each point has the
membership degree of

(I)length
1 and then the compliance degree of two fuzzy sets

is calculated. Finally, if the attribute value is a fuzzy set the compliance degree of
two fuzzy sets is calculated.

Now let us discuss the case when functions (MIN, MAX, AVG) appear in the
select statement together with fuzzy attribute values. In this case, we have to
demand that the threshold clause exists because we need the actual data set to find
the function values. If there is no threshold, we can simply remove the fuzzy
condition from the query since it holds no restrictions. In order to process these
types of queries, we first need to remove the functions from SELECT statement
and calculate them later on the dataset obtained from the actual query. For
example the query:

SELECT MIN(age)

FROM students

WHERE gpa="good"

TRESHOLD 0.5

is transformed into

SELECT age, gpa

FROM students.

If there is a GROUP BY clause present in the query we remove it but later we
calculate function results for each specified values in the clause. If the HAVING
condition exists, then calculated values are checked at the end to obtain the proper
result.

3.1 Adding Priority to FSQL

One of the contributions of the authors to state of the art is adding the priority of
the condition into database queries. Although we can put individual thresholds on
each condition this is not the same as having different priorities for each condition
in the where and having statement. A theoretical background to implement a
system that calculates the global satisfaction degree of prioritized conditions is

given in [4]. The syntax of pFSQL is the same as FSQL only the terminal symbol
conditionList has the following form:

conditionList=conditionList| condition

condition= identifier operator value [PRIORITY number].

This is just an illustration of general much more complicated syntax of SQL.

Conclusions

In this paper an idea how to implement FSQL is given. We have shown only a
sketch of a basic idea not going into the technical details. In addition, in our
implementation we did not discuss nested queries. This can be done but, in this
faze, we decided not to do this.

Implementation of pFSQL will be one of the first of its kind. Using pFCSP many
interesting queries can be processed adding a new perspective to data mining.

Acknowledgements

This paper was written with the support of the project “Mathematical Models for
Decision Making under Uncertain Conditions and Their Applications” by
Academy of Sciences and Arts of Vojvodina supported by Vojvodina Provincial
Secretariat for Science and Technological Development.

References

[1] E. Klement, R. Mesiar, E. Pap: Triangular norms, Series: Trends in Logic,
Kluwer Academic Publishers, Vol. 8, Dordrecht, 2000

[2] X. Luo, J. H. Lee, H. Leung, and N. R. Jennings: Prioritized fuzzy
constraint satisfaction problems: axioms, instantiation and validation,
Fuzzy Sets and Systems 136 (2003) 151-188

[3] A. Silberschatz, H. F. Korth, S. Sudarshan: Database System Concepts,
McGraw-Hill Higher Education, New York, 2002

[4] A. Takači, Schur-concave triangular norms: characterization and
application in pFCSP, Fuzzy Sets and Systems (in press)

	1 Introduction
	2 Preliminaries
	2.1 Fuzzy Sets and Fuzzy Logic
	2.2 Priority Fuzzy Constraint Satisfaction Problem
	2.3 Fuzzy Relational Databases and FSQL
	3 Processing FSQL Queries
	3.1 Adding Priority to FSQL

