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Abstract: In this paper a simple adaptive controller is outlined that creates only temporal 
and situation-dependent system model. It may be a plausible alternative of the more 
sophisticated soft computing approaches that aim the identification of permanent and 
complete models. The temporal model can be built up and maintained step-by-step on the 
basis of slow elimination of fading information by the use of simple updating rules 
consisting of finite algebraic steps of lucid geometric interpretation. It may be used for 
filling in the “lookup tables” or rule bases of the more sophisticated representations 
experimentally. The method applies simple elimination of the the casual algebraic 
singularities the occurrence of which cannot be evaded in the practice. The operation of the 
method is illustrated by the control of a 2 Degrees Of Freedom dynamic system as a typical 
paradigm via simulation. 
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1 Introduction 

Though strictly stable controller designs already have been proposed on the basis 
of infinite order models [1, 2], too, the necessary mathematical deductions are 
very complicated and their complexity strongly increases with the increase in 
dimensionality. A few research efforts have also been reported which solved this 
problem by energy based controller design methods that could provide a relatively 
simple control in spite of considering infinite-dimensional model. Such controllers 
are normally designed by the use of certain Lyapunov function, and ensure 
Lyapunov stability [3, 4]. However, the control of infinite-order physical systems 
are commonly based on finite order approximations in which the infinite modes 
are neglected for ease of design as e.g. in [5, 6]. These finite order models lead to 
handling discrete time-series only. 

Another important class of physical systems’ control is the set of non-stationary 
stochastic processes in which some deterministic response to an external input and 
a stationary stochastic process are superimposed. This is relevant, for instance, 
when the external input cannot be effectively described by some probabilistic 
distribution. A discrete time model can be formulated in the form of a difference 
equation with an external input {uk} that is usually considered to be known 
(Autoregressive Moving Average Model with external input - ARMAX) [7]: 
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In the so-called Takagi-Sugeno fuzzy models the consequent parts are expressed 
by analytical expressions similar to (1). The TS fuzzy controllers use some linear 
combinations of the (1)-type rules in which the coefficients depend on the 
antecedents. With the help of such Takagi-Sugeno fuzzy IF-THEN rules sufficient 
conditions to check the stability of fuzzy control systems are now available. These 
schemes are based on the stability theory of interval matrices and those of the 
Lyapunov approach [8]. It was already observed that the fuzzy controller stability 
conditions can be rewritten in form of Linear Matrix Inequalities (LMIs) [9, 10]. 
LMIs can be efficiently solved numerically by solving very complex Riccati 
equations for a positive definite solution [11]. 

Neural Networks in general are useful means of developing nonlinear models. A 
particular case of such applications is when the model itself consists of certain 
nonlinear mapping, for instance in the linearization of the nonlinear characteristics 
of various sensors [12]. Neuro-fuzzy systems provide the fuzzy systems with 
automatic tuning systems using Neural Network (NN) as a tool. The Adaptive 
Neuro-Fuzzy Inference System (ANFIS) is a cross between an artificial neural 
network and a Fuzzy Inference System (FIS) [8, 13, 14, 15]. The adaptive network 
can be a multi-layer feed-forward network in which each node (neuron) performs 
a particular function on incoming signals. Based on the ability of an ANFIS to 



learn from training data, it is possible to create an ANFIS structure from an 
extremely limited mathematical representation of the system. The ANFIS system 
generated by the fuzzy toolbox available in MATLAB allows the generation of a 
standard Sugeno style fuzzy inference system or a fuzzy inference system based 
on sub-clustering of the data [16]. Radial Basis Function Networks (RBFNs) 
provide an attractive alternative to the standard Feedforward Networks using 
backpropagation learning technique [17]. The linear weights associated with the 
output layer can be treated separately from the hidden layer neurons. As the 
hidden layer weights are adjusted through a nonlinear optimization, output layer 
weights are adjusted through linear optimization [8]. In fact the nodes of a RBFN 
represent “fuzzified” or “blurred” regions which correspond to the well defined 
antecedent sets of a fuzzy controller. The neuron’s firing achieves its maximum at 
the centre of the region while its strength decreases with the distance from the 
center according to some Gaussian function (various distance measures can also 
be used). In many cases development of the whole model is a complicated task 
especially when the “antecedent” part is strongly nonlinear multivariable function 
of the input. Evolutionary methods as e.g. the Particle Swarm Optimization 
Method that realizes stochastic random search in a multi-dimensional optimization 
space [18, 19] therefore may also be combined with them. In the case of certain 
problem classes similarity relations can also be observed and utilized to simplify 
the design process [20]. 

A significant common feature of the above approaches is that they try to develop a 
“complete” soft computing based model of the system to be controlled. This 
naturally makes the question arise whether it is always reasonable to try to identify 
a “complete” model. As a plausible alternative simple adaptive controllers can be 
imagined that do not wish to create a complete model. Instead of that on the basis 
of slowly fading recent information a more or less temporal model can be 
constructed and updated step by step by the use of simple updating rules 
consisting of finite algebraic steps of lucid geometric interpretation. This method 
may be used for filling in lookup tables of the above representations 
experimentally. In the sequel this simple approach is detailed and illustrated via 
simulation results. 

2 Geometric Approach for Dynamic Systems 

Consider a simple nonlinear causal Multiple Input – Multiple Output (MIMO) 
system described by the equation: 
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in which f(t) represents the external driving forces to be utilized for controlling 
purposes. Let us suppose that the time-derivatives can be approached by certain 



finite element approach using time-resolution δt. To numerically estimate the nth 
order time-derivatives at least (n+1) discrete values has to be taken into account 
via considering their linear combination as 
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in which the cn coefficients depend on δt and can be chosen in various manners. 
We also note that the number of the coefficients may be somewhat greater that 
(n+1), e.g. in the case of computing the central first derivatives we may use 3 
points, too. Via rearranging (2) and using (3) the following ambiguous 
representation can be obtained: 

( ) ( ) ( ) ( ) ( )( tttntttttt )δδδδ −−−−≅ fyyyΦy ,,...,2,  (4) 

in which the actually used values are concentrated in the vicinity of the values of 
time t. Supposing that the array of the values Yf:=[y(t-δt),…, y(t-nδt), f(t-δt)]T≠0 
(4) can be replaced by a scalar product in ambiguous manner by an array G as 

( ) ( ) ( )ttt f
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in which both the angle between g and y and the absolute value of g are not well 
defined. If the nth derivative of y(t) is directly measurable similar ambiguous 
approximation can be constructed for y(n)(t) as 

( ) ( ) ( )ttt f
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Let us suppose that on the basis of some rough initial or preliminary model we can 
compute the appropriate control action f(t) and can store the y(t) values, too. It is 
evident that in the case of a time-invariant linear system g does not depend on t, 
therefore collecting sufficient information coded in the form of (6) leads to the 
system of linear equations that belong to the constant array g as 
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Equation (7) has very simple and lucid geometric interpretation: the constant 
vector g is represented by time-varying or “floating” system of basis vectors  
Yf(t-nδt) (n=1,…,M). If this set is linearly independent g can be reproduced as the 
linear combination of these vectors as 
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In (8) it is naturally supposed that for a constant g for a floating system of basis 
vectors a floating or time-varying system of the μs(t) coefficients belongs in a 



special manner that they together can provide a constant vector. No let us suppose 
that we have two vectors a and b having known dot product with g. Let us find the 
component of b in the orthogonal subspace of a in the form of b⊥=b+λa: 
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Due to the linear property of the dot or “scalar” product the dot product of b⊥ with 
g can also be computed as 

agbgbg TTT λ+=⊥ . (10) 

Now let us apply the following algorithm that is similar to the Gram-Schmidt 
orthogonalization with the exception of normalizing the vectors: remove the 
components in the direction of Yf(t-δt) from Yf(t-2δt),…, Yf(t-Mδt) with the 
method given in (9). Then the new set indexed with 2,3,…M-1 will be in the 
orthogonal subspace of Yf(t-δt). Then the 2nd vector of the remaining set and 
subtract the components of the remaining ones in its direction, etc. while tracing 
the variation of the dot products according to (10). (To avoid numerical 
difficulties the components in the direction of very small vectors need no to be 
subtracted.) Furthermore, since in the case of linear systems it is just enough to 
obtain sufficient information on the independent directions only, the 
approximately same direction of vectors a and b can be stated if 
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in which ε1 and ε2 are small positive number. Otherwise these vectors have 
essentially different directions. Now let use suppose that we continue the 
systematic observation and obtain further information on g in the form of (6) as 
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Together with the information coded in (7) (12) is redundant but free of 
contradiction if g is exactly constant. In this case either (12) or one of the vectors 
in (7) can be dropped, replaced with the 1st vector in the set in (7), and the 
orthogonalization algorithm can be repeated. As a result the same constant g must 
be obtained by the use of this new set of basis vectors. 

Now let us suppose that our system is linear but not time-invariant! In this case 
(7) and (12) are rather controversial than redundant because these vectors do not 
belong exactly to the same g since they were obtained from measurements taken 
in different time instances. A plausible and lucid method of contradiction 
resolution may be finding the vector in the closest direction of the last one in the 
sense of (11) since the remaining vectors convey less relevant information on the 
system’s behavior in this direction. This vector can be omitted in the system in (7) 



and it can be replaced by the new information conveyed by (12). Then by 
executing the orthogonalization algorithm on the remaining set the “obsolete 
information regarding the new direction” can be removed and replaced by the 
fresh information. [Since the addition in (8) is commutative, in practice the first 
column of the original set can be put in the place of the dropped vector, and the 
new one can be placed into the 1st place.] 

Finally let us suppose that our system is neither time-invariant nor linear! In this 
case not only the direction but the absolute values of the vectors also influence the 
behavior of the system. In this case the old vector closest to the new one in the 
sense of a norm can be dropped and replaced by the new one because the 
information mainly conveyed by it is “refreshed”. 

In the possession of some prescribed control strategy formulating the desired 
trajectory tracking with asymptotic convergence continuous tracking error is 
expected and the array g in (8) can be used for calculating the necessary control 
action instead of the rough initial model as 
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in which the quadratic matrix gM corresponds to those part of g in which the 
coefficients of f(t) are placed. In (13) it is supposed that gM is invertible. However, 
since g is obtained via observaton of often noisy signal this supposition is no 
always substantiated. To obtain a useful control signal even in the case of 
singularity two plausile methods are applied in this paper. The first one is based 
on the algebraic adjoint of gM. Since for an invertible quadratic matrix 
M-1=Adj(M)/det(M), and in Adj(M) only the linear combinations of the products 
of the matrix elements of M occur, instead of M-1 the following matrix containing 
a small positive constant ε can be used: 
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If |det(M)|>>ε this matrix well approximates M-1, otherwise (14) yields an unique 
value the geometric interpretation of which is not very lucid. An alternative 
approach utilizes the linearity of the scalar product and the matrix product. If M 
has an inverse, and a, b, c, and w are vectors, λ is a scalar, if c=a+λb, then 
M-1c=M-1a+λM-1b, and wTc=wTa+λwTb. Therefore if the effect of M-1 is known 
on a set of linearly independent vectors, its effect also is known on an arbitrary 
vector if this vector is expressed as the linear combination of these vectors. If I is 
the unit matrix, I=M-1M, therefore effect of M-1 is well known on the columns of 
M: they are the columns of I. (If M is invertible, its columns serve as a full set of 
basis vectors.) These vectors can be orthogonalized by the Gram-Schmidt 
algorithm without normalizing the vectors during this process. The vectors the 



norm of which is under a limit are replaced by zero vectors. In the case of using an 
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the scalar product of vector w is computed with the columns of M. Following the 
Gram-Schmidt algoritmh the scalar product of w with the new vectors is computed 
according to the above observation. In the possession of the scalar products and 
the norms the νi coefficients can simply be computed to find M-1w. If the columns 
of M are linearly dependent, and there is a solution to the problem, a well defined 
element of the ambiguous solutions is obtained. If there is no solution, the part of 
w in the orthogonal subspace of the columns of M is omitted, and a well defined 
elelement of the ambiguous approximations of w is obtained. 

3 The Model of the Cart and Pendulum System 

The Euler-Lagrange Equations of motion of the system is 
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in which some “realistic” data were used, i.e. M=1.096 kg and m=0.109 kg denote 
the mass of the cart and the pendulum, L= 0.25 m and ϕ [rad] is the length and the 
rotational angle of the pendulum with respect to the upper vertical direction 
(clockwisely), x [m] denotes the horizontal translation of the cart+pendulum 
system in the right direction, b=0.1 N/(m/s) and f=0.00218 kg×m2/s are viscous 
friction coefficients, I=0.0034 kg×m2 denotes the momentum of the arm of the 
pendulum, and Q1 [N] denotes the force horizontally accelerating the whole 
system. In the forthcoming simulations this system was “identified”. 

4 Simulation Results 

In the simulations the evenly distributed joint coordinate acceleration 
measuremement noise was supposed. In both cases ε=10-3 was chosen. In Fig. 1 
the appropriate trajectory tracking and in a finer resolution the tracking error vs. 
time is described. In both cases one can realize the initial “learning phase” on the 
graphs as well as the session of adaptation. 



 

 
Figure 1 

Trajectory tracking (1st row) and tracking error (2nd row) for the geometrically interpreted singularity 
avoidance (left column), and the algebraic adjoint based method (right column) 

The geometrically interpreted singularity avoidance and inversion method seems 
to yield more stable results. 

The same information is communicated by the figures containing the identified 
components of the gM matrix (Fig. 2). The presence of the random noise can better 
be revealed in the case of the geometrically interpreted solution, especially on the 
last two graphs. 

Figure 3 reveals that normally the system has a “dominant” basis vector that – due 
to the operation of the algorithm applied – normally stands in the 1st place, and it 
also has small components (the remaining basis vectors) that seem to be 
responsible for minor corrections in the prediction. As it was expected their little 
norm does not cause numerical problems in the calculations. 

It also reveals the necessity of gradually letting the “obsolete” information fade. 



 

 

 

 
Figure 2 

The identified components for the geometrically interpreted singularity avoidance (left column), and 
the algebraic adjoint based method (right column) 



 
Figure 3 

The norms of the floating basis vector system for the geometrically interpreted singularity avoidance 
(left column), and the algebraic adjoint based method (right column) 

Conclusions 

In this paper, as a plausible alternative of certain sophisticated soft computing 
approaches trying to identify “complete” system models, a simple adaptive 
controller dealing with continuously updated temporal model was investigated via 
simulation in the case of a 2 Degree Of Freedom nonlinear system. 

This model utilizes the slowly fading information via applying finite algebraic 
steps of lucid geometric interpretation based on the Gram-Schmidt 
orthogonalization algorithm. The simulation investigations indicated that this 
approach can be useful. Its great advantage is simplicity, limited number of 
algebraic operations and lucid interpretation. In contrast to the mathematically far 
more intricate solutions based on the Lyapunov technique normally guaranteeing 
Lyapunov stability without making it possible to prescribe dynamic details of 
trajectory tracking this simple approach makes it possible to prescribe arbitrary 
error relaxation by the use of simple kinematic terms. Neither complicated 
evolutionary computation or LMIs based optimizations seems to be necessary for 
its use. The method may be used for filling in the “lookup tables” or rule bases of 
the above representations experimentally. Further investigations concerning the 
operation of this approach in the cases of e.g. fractional order linear or nonlinear 
systems seem to be expedient in the future. 
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