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Abstract: In signal processing applications, a key role is played by the Fourier trans-
forms. The mathematical structure underlying Fourier analysis is the linear structure.
In the present paper we propose and study a tool designed for nonlinear signal and
image processing, that is novel Fourier-like transforms, based on a pair of pseudo-
operations consisting of a uninorm and an absorbing norm. We analyse in the present
paper theoretical properties of the proposed pseudo-Fourier transform.
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1 Introduction

In signal processing, if we regard any of the classical results, it can be observed
that the underlying algebraic structure is the linear space structure. Naturally,
the following question raises: is the linear space structure the only one which
can be used for signal processing purposes? Moreover, are the addition and
multiplication of the reals the only operations that can be used for defining
signal transformation techniques? Do all operators used in the signal and
image processing need to be linear?

In several research fields, idempotent analysis and pseudo-linear structure have
already shown their power in dealing with problems where linear structure is
not helpful ([6, 8, 11, 12, 13, 14, 16]). This pseudo-linear structure is based
on a so called pseudo-addition and a pseudo-multiplication. The mathematical
apparatuses given on this structure are known as idempotent analysis ([6, 8])
and pseudo-analysis (see [10, 11, 12, 13, 14, 15]).



The same question as above was proposed in Approximation Theory, i.e., is the
linear structure the only one that can be used in the classical Approximation
Theory? The answer was also negative and, in this sense, maxitive Shepard-like
approximation operators were proposed in [3]. Also, a discrete cosine transform
method based on a pair consisting of a generated uninorm and an absorbing
norm was proposed (see [2]) and studied mainly from the image processing
point of view.

It is worth of noticing that the used operations do not need to form only the
pseudo-linear structures. As shown in [17], various algebraical structures are
at disposal. There the introduced approximation operators over a BL-algebra
proved to be an effective tool for the data compression [18] as well as for the
image coding and decoding problem [19]. Moreover, this investigation is closely
related to the theory of fuzzy sets and systems, hence, it widen out the area of
possible applications.

In the present paper we continue this line of research and we propose a pseudo-
linear analogous of the classical Fourier Transform.

The proposed pseudo-Fourier transforms are defined based on a pair consisting
of a generated uninorm and absorbing norm. Uninorms were introduced by
Yager and Rybalov [20] as a generalization of t-norms and t-conorms ([5]). For
uninorms, the neutral element is not forced to be either 0 or 1, but can be
any value in the unit interval. Absorbing norms are a generalization of the
well-known median. For the absorbing norm (see [1]), a given element has
absorbing property, i.e., its composition with any other element gives the ab-
sorbing element itself. We will use in the present paper a uninorm based on
an additive generator and an absorbing norm based on the same (but multi-
plicative) generator. For such a pair of operations the distributivity property
holds.

After the preliminary section, i.e., in Section 3, we define and study the pseudo-
Fourier transform. In Section 4 we present the Inverse pseudo-Fourier trans-
form. At the end of the paper some conclusions and topics for further research
are given.

2 Preliminary notions

Asg already mentioned, construction presented in this paper has been done in
the pseudo-analysis’ framework. It is based on a special type of generated
semiring, i.e. on a special type of semiring of the second class.

Let [a, b] be closed subinterval of [—o00, +00] (in some cases semiclosed subinter-
vals will be considered) and let < be total order on [a, b]. Structure ([a, b], D, ®)
is a semiring if the following hold:

e @ is pseudo-addition, i.e., a function ® : [a,b] X [a,b] — [a,b] which is



commutative, non-decreasing (with respect to <), associative and with a
zero element, denoted by 0;

e ®is pseudo-multiplication, i.e., a function ® : [a, b] X [a,b] — [a,b] which
is commutative, positively non-decreasing, associative and with a unit
element denoted by 1;

e 00z =0;
e 20 (Yd2)=(20Y) & (z0O2)

Semirings with continuous (up to some points) pseudo-operations are divided
into three classes. The first class contains semirings with idempotent pseudo-
addition and non idempotent pseudo-multiplication. Semirings with strict
pseudo-operations defined by monotone and continuous generator function form
the second class, and semirings with both idempotent operations belong to the
third class. More on this structure as well as on measures and integrals con-
structed on it can be found in [6, 7, 8, 9, 10, 11, 12].

For the purpose of this construction we shall consider a semiring of the second
class on the unite interval, i.e. ([0,1],®,®). As a pseudo-addition ® : [0, 1]*> —
[0,1], the representable uninorm with neutral element 0 = e € (0,1) will be
used. In this case, for given e € (0,1) and a strictly increasing continuous
function g : [0,1] — R such that g(0) = —oo, g(e) = 0 and g(1) = +o0,
operation @ is

c®y=yg""(9(z) +9(v)), (1)

for all (z,y) € [0,12\ {(0,1),(1,0)}. If (z,y) € {(0,1),(1,0)}, one of the
following conventions will be accepted: either 01 =190 =0o0r 01 =
1e0=1.

Remark 1 A uninorm U : [0,1]? — [0,1] is a commutative, associative and
increasing binary operator with a neutral element e € [0, 1] (see [20]). Specially,
for e = 1 this type of a operator is a triangular norm, and for e = 0 a triangular
conorm (see [5]). The class of representable uninorms with a neutral element
e € (0,1), i.e., the class used in this paper, has been characterized in [4].

Now, corresponding pseudo-multiplication ® is

oy =g "(g9(x)9)), (2)

and, for previously described generating function g, it belongs to the class of
so-called absorbing norms.

Remark 2 An absorbing norm © : [0,1]*> — [0,1] is a commutative, associa-
tive and increasing binary operator with an absorbing element a € [0,1], i.e.

(Ve € [0,1]))(z © a) = a). ([1])



Some of the basic properties of operations (1) and (2) are (see [2]):
(i) @ is an absorbing norm with e as absorbing element;
(i) 1=g7"'(1);
(iii) for all z € (0,1) there exists 6z € (0,1) such that =z ® (&) = 0.

Since 5z = g 1 (—g(z)) ([2]), the pseudo-subtraction for all (z,y) € [0,1]? \
{(0,1),(1,0)} can be given in the following form:

roy=zo(ey) =g "(9x) —g()). (3)

3 Pseudo-Fourier transform

Let ([0,1],®,®) be a previously described semiring, where © and © are given
by generating function g : [0,1] — R. It can be easily shown that any function
f:R —[0,1] can be split into two parts with respect to @, i.e.,

f(x) = Ep(z) ® Op(z),
where
Ey(z) = g7 (1/2)0(f(2) ® f(~2)) and Oy(z) = g~' (1/2)0(f(z) © f(~=)),

and © is operation given by (3). Of special interest for this paper are facts that
E, and g o E, are even functions and g o O, is an odd function.

Definition 3 The pseudo-Fourier cosine transform based on the semiring
([0,1],®,®) of a measurable function f: R — [0,1] is

D
RN =0 (gz) 0 [ o Cosem) o Bpnyan, (@)

for every real number w (if the right side exists).
The pseudo-Fourier sine transform based on the semiring ([0, 1], ®, ®) of a mea-
surable function f : R —[0,1] is

52
N =0~ ()0 [ o e oo,@n o

for every real number w (if the right side exists).

Remark 4 Integrals on the right in (4) and (5) are pseudo-integrals based
on the given semiring of the second class, i.e., g-integrals (see [7, 9, 11]).
Definition of g-integral gives us following forms of transforms (4) and (5):

FE @) =g (# [ o B coson dx>



and

U@ =07 (= [ 9Ol sin (o) ds )

As in the classical case, the pseudo-Fourier transform of some measurable func-
tion is expressed in terms of the pseudo-Fourier cosine transform and pseudo-
Fourier sine transform.

Definition 5 The pseudo-Fourier transform based on the semiring ([0, 1], ®, ®)
of a measurable function f: R — [0,1], for every real number w, is

FOUf @)](w) = FEf (@)](w) —iFS[f (@)](w), (6)

where F& and F& are transforms given by (4) and (5).

Some of the basic properties of this Fourier-type transform that can be easily
shown are:

e pseudo-linearity, i.e., if f,g : R — [0, 1] are measurable functions and a
and b are some real parameters, then

FPao f)=ao F2(f)

and
FEf@h) = (FE) @ FE(h) =i (FS(f) @ FS(h)) ;

e pseudo-shift property, i.e.,
FElf (z=a)l(w) = 97" (cos aw) OFE[f (2)](w)Og ™" (sin aw) 0 FG[f (2)](w)
and
FSlf(z=a)l(w) = 97" (cos aw)OFG [ ()] (w)Dg™" (sin aw) OFE[f (2)](w)
where f : R — [0, 1] is measurable function and a some real parameter;

e if f: R — [0,1]is measurable and bounded (in sense that lim,_, 1 f(z) =
0 with respect to some pseudo-metric based on generator g) function, then

72 [T ) = g ) 0 Sl @N)

and

72 [T ) =~ 0 22,

d®
where T is pseudo-derivative (see [10, 11]).
z



Also, following pseudo-convolution theorem can be easily proven.

Theorem 6 If x is pseudo-convolution of the second type based on given semir-
ing ([0,1],®,©) and f,g : R = [0, 1] are measurable functions, then

Fe(f+h) =g (Var) © (FE() @ FE(h) © FE()) © FE(h)
and
F(f ) =g (Var) © (FE(F) @ FE(h) & FE(f) © FE(h)

Proof is based on properties of classical Fourier transform and properties of
pseudo-convolution of the second type given on g-semiring. More on pseudo-
convolutions can be found in [15].

4 Inverse Pseudo-Fourier Transform

In the previous section, we have seen that some certain operation with functions
corresponds to operations with their pseudo-Fourier images. The usefulness of
this relationship becomes clear if we are able to convert from pseudo-Fourier
images back to functions, i.e. if there exists the inverse transformation.

The simple calculation leads to

o0

F(w) :f(g o f)(w) = \/%_ﬂ_ / go f(t)e—iwt dt
:\/% / go Ep(t)cos wtdt — i / g0 Op(t) sin wt dt

=g o FE(f)w) —igo F3(f)(w),

where F is the classical Fourier transform. Observe that both F¢ (f)(w) and
g0 FE(f)(w) remain even and g o Fg (f)(w) is odd.

For simplicity, let us use the following notation:

/; p(z) ©®dmg(z) =g~" <\/L2—7r> © /[_@OO,OO] ple) @ ate) de

and

/ ' pla) d(z) = =/ ' pla)



Now, the inverse transform, obtained in analogy with the classical approach, is
of the following form:

@
-1
g~ (cos tz) ® dm]_-g;(f) (t)

Fo P2 () @) = /

[_00700]
@

® / g~ (sin tz) ® dm}-ga(f)(t)
[_00700]

= Fo.cAFE (N} @) © Fo {FS (HYHa) (D)

Further, in order to reconstruct the original function from its even and odd
parts, we can ask whether ]—g}c{}?(f)} = E, and }'e;’ls{fge(f)} = Op. The
following Theorem will give us an answer. We will start with the preliminary
Lemmas.

Lemma 7 If go f € L' then F®(f) is continuous.

Lemma 8 Let

A 0
ha(z) = [ cos(tz)d(t) and (fxh)(z)=g" [ gof(z—yh(y)dy).
/ /

Ifgo f € L then

(f xha)(2) =
52 . o L
/[o,x] 97 (cos te) © dmyg () (1) © /{ onl g~ (sin tx) © dmygo 4 (t). (8)
Theorem 9 Ifgo f € L* andgofg?(f),gofé@(f) c L! then
Jim (f 5 ) (@) = F5{F ()} (@) = f(2), (9)

nearly everywhere and Fg' {F®(f)}(x) is continuous.

The proof of (9) is based on the limit translation of (8) for A — oo and the
continuity of Fi ' {F®(f)}(z) follows from Lemma 7.

5 Conclusion
The main aim of this paper has been to present one possible generalization,

based on the pseudo-analysis’ apparatus, of well known classical Fourier trans-
form. Some further research of this problem should concern construction and



investigation of discrete pseudo-Fourier transforms based on presented back-
ground, as well as possible applications of obtained transforms (both continu-
ous and discrete), specially in the area of signal and image processing, but also
in the study of nonlinear partial differential equations.
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