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Abstract: The signed fuzzy measures are considered and some of their properties are

shown. There is introduced the revised monotone functional and there are given con-

ditions for its asymmetric Choquet integral-based representation.
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1 Introduction

Due to its special non linear character, the Choquet integral with respect to
a fuzzy measure, is one of the most popular and flexible aggregation operator
[3, 5, 17]. The basic features of Choquet integral, defined for non-negative
measurable functions, are monotonicity and comonotonic additivity, see [1, 3,
10]. For an exhaustive overview of applications of Choquet integral in the
decision under uncertainty we recommend [2, 8, 9, 14, 15, 18]. Recall that
non-negative set function m such that m(∅) = 0 and A ⊂ B implies m(A) ≤
m(B) (monotonicity), is called by various names, such as capacity, non-additive
measure, fuzzy measure.

A generalized fuzzy measure, a signed fuzzy measure, introduced by Liu in
[6], is a revised monotone, real-valued set function, vanishing at the empty set,
see [10]. Murofushi et al. in [7] used term non-monotonic fuzzy measure to
denote a real-valued set function satisfying m(∅) = 0. In this paper we deal
with a signed fuzzy measure in the sense of definition given in [6].

The properties of two usual extensions of Choquet integral to the class of



all measurable functions have been studied by various authors [1, 3, 7, 10].
The first one extension, the symmetric Choquet integral, introduced by Šipoš,
is homogeneous with respect to multiplication by a real constant and the second
one, the asymmetric Choquet integral is comonotone additive and homogeneous
with respect to multiplication by a non-negative constant. In both cases the
monotonicity is violated. The asymmetric Choquet integral is defined with
respect to a real-valued set function m, not necessary monotone.

The fuzzy integral defined with the use of maximum and minimum opera-
tors was introduced by Sugeno in [16]. The Sugeno integral is defined on the
class of functions whose range is contained in [0, 1] and with respect to a nor-
malized fuzzy measure. It is comonotone-∨-additive (comonotone maxitive),
∧-homogeneous and monotone functional. An extension of the Sugeno integral
in the spirit of the symmetric extension of Choquet integral is proposed by
M. Grabisch in [4]. The symmetric Sugeno integral is neither monotone nor
commonotone -∨-additive in general. In the paper [13] authors considered a
representation by two Sugeno integrals of the functional L defined on the class
of functions f : X → [−1, 1] on a finite set X. In the case of infinitely countable
set X there was obtained that the symmetric Sugeno integral is comonotone-
6-additive functional on the class of functions with finite support.

In this contribution we will deal with a revised monotonicity of a real-valued
set function m, m(∅) = 0 and asymmetric Choquet integral with respect to m.
In the next section the short overview of basic notions and definitions is given.
In Section 3 we consider a revised monotonicity of real-valued set functions van-
ishing at the empty set. Finally, in Section 4 we introduce a revised monotone
functional and discuss the conditions for its asymmetric Choquet integral-based
representation.

2 Preliminaries

Let X = {x1, . . . , xn} be a finite set. Let P(X) be class of subsets of universal
set X. We have by [6, 10] the following definition.

Definition 1 A real-valued set function m : P(X) → R, is a signed fuzzy
measure if it satisfies
(i) m(∅) = 0
(ii) (RM) If E , F ∈ P(X), E ∩ F = ∅, then

a) m(E) ≥ 0, m(F ) ≥ 0, m(E) ∨m(F ) > 0 ⇒ m(E ∪ F ) ≥ m(E) ∨m(F );
b) m(E) ≤ 0, m(F ) ≤ 0, m(E) ∧m(F ) < 0 ⇒ m(E ∪ F ) ≤ m(E) ∧m(F );
c) m(E) > 0, m(F ) < 0 ⇒ m(F ) ≤ m(E ∪ F ) ≤ m(E).

The conjugate set function of real-valued set function m, m : P(X) → R
is defined by m̄(E) = m(X) −m(Ē), where Ē denotes the complement set of
E, Ē = X \ E. Obviously, if m is fuzzy measure, m̄ is fuzzy measure, too.



However, if m is a signed fuzzy measure, its conjugate set function m̄ need not
to be a signed fuzzy measure and this fact will be discussed in the next section.

In the next example, introduced in [12], there is introduced a signed fuzzy
measure m and we give an interpretation of the condition (RM) of the revised
monotonicity of m in an application.

Example 1 Let X be a set of 2n elements. Let A, B ⊂ X such that X =
A ∪ B , A ∩ B = ∅ and card(A) = card(B) = n. We define the set function
m : P(X) → R by:

m(E) =





card (X), E = A
−card (X), E = B

card (A ∩ E)− card (B ∩ E), else.

m is a signed fuzzy measure.
We discuss the revised monotonicity of m. Same as in the modified version

of the example a workshop, given by Murofushi et al. in [7], let us consider the
set X as the set of all workers in a workshop, and sets A and B are the sets of
good and bad workers in sense of their efficiency, i.e., inefficiency. If we sup-
pose that workers from group A work two times better if they work all together
(with nobody else), and workers from B two times worse, and in the other
cases ”anybody is effective in the proportion to its quantitative membership to
the ’good’ group A or ’bad’ group B”. The set function m is used to denote
the efficiency of the worker. The interpretation of revised monotonicity is in
the assumptions that for disjoint groups E of ’good’ and F of ’bad’ workers, if
they work together, then their productivity is not greater to productivity of E
and not less to productivity of F , for groups E and F of ’good’(’bad’) workers
the simultaneous productivity is not less (not greater) to theirs individual pro-
ductivity. Also, we have m(X) = 0, i.e., the productivity of all workers in the
workshop equals to zero.

Let f be a real-valued function on X. We denote f(xi) = fi for i = 1, 2, . . . n
and F denotes class of all real-valued functions on X. The asymmetric Choquet
integral with respect to a set function m : P(X) → R of function f : X → R is
given by

Cm(f) =
n∑

i=1

(fα(i) − fα(i−1))m(Eα(i)),

where f admits a comonotone-additive representation f =
∑n

i=1 fα(i)1Eα(i)

and α = (α(1), α(2), . . . , α(n)) is a permutation of index set {1, 2, . . . , n} such
that

fα(1) ≤ fα(2) ≤ · · · ≤ fα(n),

fα(0) = 0, sets Eα(i) are given by Eα(i) = {xα(i), . . . , xα(n)} and 1E is char-
acteristic function of set E, E ⊂ X. The asymmetric Choquet integral can be
expressed in the terms of the Choquet integrals of non-negative functions f+



and f−, the positive and negative part of function f , i.e.

Cm(f) = Cm(f+)− Cm̄(f−), (1)

where f+ = f ∨ 0 and f− = (−f) ∨ 0, and m̄ is the conjugate set function of
m.
Recall that two functions f and g on X are called comonotone [3] if for all
x , x1 ∈ X we have f(x) < f(x1) ⇒ g(x) ≤ g(x1). The asymmetric Choquet
integral is a comononotone additive functional on F , i.e. for all comonotone
functions f, g ∈ F we have

Cm(f + g) = Cm(f) + Cm(g).

3 Signed fuzzy measure

In this section we will consider a signed fuzzy measure m with m(X) = 0. We
will examine when its conjugate set function m̄ is a signed fuzzy measure, too.
Note that for a non-negative (non-positive) signed fuzzy measure m, condition
m(X) = 0 implies m(E) = 0 for all E ∈ P (X). In the sequel we suppose
that m : P(X) → R is a signed fuzzy measure of non-constant sign. We easily
obtain the next lemma by definition of signed fuzzy measure and the condition
m(X) = 0.

Lemma 1 Let m be a signed fuzzy measure, m(X) = 0. m(E) and m(Ē) are
the opposite sign values, i.e.,

(∀E ∈ P(X)) (m(E) > 0 ⇔ m(Ē) < 0).

Definition 2 We say that a real-valued set function m, m(∅) = 0 satisfies
an intersection property if for all E , F ∈ P(X), E∩F 6= ∅ and E∪F = X
we have

a) m(E) ≥ 0, m(F ) ≥ 0, m(E) ∨m(F ) > 0 ⇒ m(E ∩ F ) ≥ m(E) ∨m(F );
b) m(E) ≤ 0, m(F ) ≤ 0, m(E) ∧m(F ) < 0 ⇒ m(E ∩ F ) ≤ m(E) ∧m(F );
c) m(E) > 0, m(F ) < 0 ⇒ m(F ) ≤ m(E ∩ F ) ≤ m(E).

We have the next theorem.

Theorem 1 Let m be signed fuzzy measure such that m(X) = 0. m has an
intersection property if and only if the conjugate set function m̄ of m is a signed
fuzzy measure.

Proof. Let m be a signed fuzzy measure with m(X) = 0.
(=⇒) First, we suppose that m has an intersection property. We will prove
that m̄ is a signed fuzzy measure.
(i) Directly by definition of m̄ we have m̄(∅) = 0.



(ii) In order to prove condition (RM) a) let E,F ∈ P(X) such that E ∩F = ∅
and m̄(E) ≥ 0, m̄(F ) ≥ 0, m̄(E) ∨ m̄(F ) > 0. We have Ē ∪ F̄ = X and
m(Ē) ≤ 0, m(F̄ ) ≤ 0 and m(Ē) ∧m(F̄ ) < 0. (a)
If we suppose that Ē ∩ F̄ = ∅ then we have F = Ē. By Lemma 1. we
obtain that the values m(F ) and m(F̄ ) are the opposite sign values and it is
in contradiction with (a). Therefore, Ē ∩ F̄ 6= ∅. By the intersection property
of m we have:

m(Ē ∩ F̄ ) ≤ m(Ē) ∧m(F̄ ) ⇐⇒ m(E ∪ F ) ≤ m(Ē) ∧m(F̄ )
⇐⇒ −m̄(E ∪ F ) ≤ (−m̄(E)) ∧ (−m̄(F ))
⇐⇒ m̄(E ∪ F ) ≥ m̄(E) ∨ m̄(F ).

Hence, we have that m̄ satisfies condition (RM) a). Similarly we obtain that
m̄ satisfies conditions (RM) b) and c), hence, m̄ is a signed fuzzy measure.
(⇐=) Let m̄ be a signed fuzzy measure, i.e. m̄ is a revised monotone set
function and m̄(∅) = 0. We obtain the claim directly by definition of the
intersection property and the above consideration. ¤

Example 2 Let m be a set function defined at the Example 1. m is a signed
fuzzy measure with m(X) = 0. Obviously, m has an intersection property. Its
conjugate set function m̄ : P(X) → R is defined by:

m̄(E) =





card (X), E = A
−card (X), E = B

card (B \ E)− card (A \ E), else.

m̄ is a signed fuzzy measure. Moreover, we have m = m̄.

4 Revised monotone functional

In this section we focus on the asymmetric Choquet integral with respect to
a signed fuzzy measure. As it is mentioned before, the monotonicity is vio-
lated. We will discuss the modification of monotonicity property, the revised
monotonicity of asymmetric Choquet integral.

A real valued functional L, L : F → R, defined on the class of functions
f : X → R, can be viewed as an extension of a signed fuzzy measure m, so
it is reasonable to require that L(1E) = m(E), for all E ∈ A (1E denotes
characteristic function of set E ⊂ X). In order to examine the properties of a
real valued functional L, under which it can be represented by the asymmetric
Choquet integral w.r.t. a signed fuzzy measure, it is useful to consider the
concept of comonotone functions.

The functional L is comonotone additive iff

L(f + g) = L(f) + L(g)



for all comonotone functions f, g ∈ F . We say that functional L is positive
homogeneous iff

L(a f) = aL(f)

for all f ∈ F and a ≥ 0.
We introduce a revised monotone functional L defined on F , see [12].

Definition 3 Let L : F → R be a functional on F .
(i) L is revised monotone if and only if

a) L(f) ≥ 0, L(g) ≥ 0, L(f) ∨ L(g) > 0 ⇒ L(f + g) ≥ L(f) ∨ L(g)
b) L(f) ≤ 0, L(g) ≤ 0, L(f) ∧ L(g) < 0 ⇒ L(f + g) ≤ L(f) ∧ L(g)
c) L(f) > 0, L(g) < 0 ⇒ L(g) ≤ L(f + g) ≤ L(f)

for all functions f, g ∈ F .
(ii) L is comonotone revised monotone if and only if conditions a), b) and c)
are satisfied for all comonotone functions f, g ∈ F .

Note that for a non-negative functional L acting on non-negative functions
on X, the revised monotonicity ensures the monotonicity.

Directly by definitions of the comonotone additive and the revised monotone
functional L we have the next proposition.

Proposition 1 The asymmetric Choquet integral w.r.t. a signed fuzzy measure
m , Cm : F → R is a comonotone revised monotone functional.

Remark 1 Note that any additive functional L : F → R is a revised monotone
functional. The Lebesgue integral with respect to a signed measure µ is a re-
vised monotone functional.

We have the next theorem.

Theorem 2 Let L be a real valued, revised monotone, positive homogeneoues
and comonotone additive functional on F . Then there exists a signed fuzzy
measure mL, such that L can be represented by the asymmetric Choquet integral
w.r.t. mL, i.e.,

L(f) = CmL(f).

Proof. Let m be a set function m defined by

mL(E) = L(1E), for E ⊆ X.

Observe that for comonotone functions 1X and −1E , we have

mL(Ē) = L(1Ē) = L(1X + (−1E)) = L(1X) + L(−1E) = mL(X) + L(−1E),

hence
L(−1E) = −m̄L(E), E ⊆ X.



By definition of mL and revised monotonicity of functional L we have:
1) mL(∅) = L(1∅) = L(0) = 0
2) a) for E , F ∈ A, E ∩ F = ∅, and
mL(E) ≥ 0, mL(F ) ≥ 0, mL(E) ∨mL(F ) > 0 we have

mL(E ∪ F ) = L(1E∪F ) = L(1E + 1F )
≥ L(1E) ∨ L(1E) = mL(E) ∨mL(F ).

Analogously, we obtain that mL satisfies conditions (RM) b) and c), hence mL

is the revised monotone set function, so it is a signed fuzzy measure. Now, we
consider f ∈ F and its comonotone additive representation f = f+ + (−f−),
where

f+ =
n∑

i=1

(ai − ai−1)1Ei ,

−f− =
n∑

i=1

(bi − bi+1)(−1Fi) ,

ai = f+
α(i), a0 = 0, bi = f−α(n+1−i), bn+1 = 0,

ai’s are in non-decreasing, bi’s are in non-increasing order, α is a permutation,
such that −∞ < fα(1) ≤ · · · ≤ fα(n) < ∞, Ei = Eα(i),

Fi = E1 \ Eα(n+2−i), Eα(i) = {xα(i), . . . , xα(n)} and Eα(n+1) = ∅ .
For every i and j the functions 1Ei and 1Ej are comonotone, and by comono-
tone additivity and positive homogeneity of the functional L, we have

L(f+) =
n∑

i=1

(ai − ai−1)L(1Ei)

=
n∑

i=1

(ai − ai−1)mL(Ei)

= CmL
(f+)

and

L(−f−) =
n∑

i=1

(bi − bi+1)L(−1Fi)

= −
n∑

i=1

(bi − bi+1)(−L(−1Fi))

= −
n∑

i=1

(bi − bi+1)m̄L(Fi)

= −Cm̄L
(f−).



Therefore by the comonotonicity of functions f+ and −f− we obtain that

L(f) = L(f+ + (−f−))
= L(f+) + L(−f−)
= CmL

(f+)− Cm̄L
(f−)

= CmL(f).
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