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Abstract: The aim of this paper is to underline the links between some concepts and

methodologies common to different research areas. In particular, ascending and de-

scending Morse complexes, which describe a decomposition of the domain M of a

scalar function f , are related to a pair of dual subdivisions S and S∗ of M. A Morse-

Smale complex can be viewed as an overlay of S and S∗, and, as a consequence,

(anti)cancellation of critical points of f can be interpreted as an Euler operation on

S. Thus, by shifting the attention from regions, covered by cells involved in modifica-

tions, to edges and operations on them, it follows that any feasible (anti)cancellation

preserves the structure of the Morse-Smale complex, and that the only restriction on

the application of such operation is induced by the values of f at the vertices involved

in an (anti)cancellation.
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1 Introduction

We want to point out some similarities between results in different research
areas, and to model structures defined in one research field using structures
defined in another field. The structures we want to compare are a Morse-
Smale complex, which is introduced in scientific visualization for modeling the
topology of a scalar function f defined over a manifold M, and a pair of dual
subdivisions of M, introduced in computational geometry primarily for mod-
eling Voronoi diagram and Delaunay triangulation. We will show that these
structures are basically the same, apart from the fact that a Morse-Smale com-
plex MS arises from the study of a scalar function f , and thus each vertex p in
MS has an associated function value f(p). Moreover, the operations for incre-
mental modification of these structures are the same, and can be expressed one
through the other. This insight enables us to remove some limitations in the
application of a feasible (anti)cancellation of critical points in a Morse-Smale
complex.



The remainder of this paper is organized as follows. In Section 2, we in-
troduce some background notions. In Section 3, we introduce and compare
Morse-Smale complexes and dual subdivisions. In Section 4, we describe and
compare elementary simplification and refinement operations of structures in-
troduced in Section 3. Section 5 concludes the paper.

2 Background Notions

In this Section, we present some background notions on cell complexes and
Morse theory, that we will use in the rest of the paper.

2.1 Cell Complexes

Intuitively, a cell complex is a collection of basic elements, called cells, which
cover a domain in the Euclidean space E

n [3]. For more information on algebraic
topology, see [4].

A k-dimensional cell (k-cell) in E
n, 0 ≤ k ≤ n, is a subset of E

n homeomor-
phic to an open k-dimensional disk Bk = {x ∈ E

k : ||x|| < 1}. A 0-cell is a point
in E

n. The relative boundary b(γ) of a k-cell γ, 1 ≤ k ≤ n, is the boundary of γ

with respect to the topology induced by the usual topology of E
n. The relative

boundary of a 0-cell is empty. A cell complex Γ is a finite set of cells in E
n,

such that the cells are disjoint, and the boundary of each k-dimensional cell is
the union of cells of Γ of dimension less than k. The combinatorial boundary
B(γ) of a cell γ is the collection of cells γ ′ of Γ such that γ′ ⊆ b(γ) (as a point
set). A cell γ′ on the boundary of a cell γ is called a face of γ. The maximum
d of dimensions of cells γ over all cells of a complex Γ is called the dimension
or the order of Γ. A d-dimensional complex is called regular if each k-cell γ ′,
0 ≤ k ≤ d, is a face of some d-cell γ. The domain (or carrier) ∆Γ of a cell
complex Γ is the subset of E

n spanned by the cells of Γ. We are interested in
2-dimensional regular cell complexes with manifold domain. In Figure 1 (left)
such a complex is illustrated, whose domain is the extended plane (Euclidean
plane compactified by the addition of a point at infinity), or, equivalently, a
sphere.

2.2 Morse Theory

In short, Morse theory is a study of relationships between the topological shape
of a manifold, and (the critical points of) a function defined on a manifold. We
review here the basic notions of Morse theory in the case of 2-manifolds. For
more details on Morse theory, see [6, 5].

We consider a C2-differentiable real-valued function f (also called scalar
field, or elevation function) defined over a compact 2-dimensional manifold M.
A point p ∈ M is a critical point of f if and only if the gradient ∇f of f

vanishes on p (∇f(p) = 0). Function f is said to be a Morse function when



Figure 1: (left) A subdivision S of the extended plane. It has the structure of a
regular 2-dimensional cell complex. (right) A quadrangulation of the extended
plane obtained as an overlay of a subdivision S (bold) and its dual S∗ (dashed).

all its critical points are non-degenerate, i.e., when the Hessian matrix Hesspf

of the second order derivatives of f at p is non-singular (its determinant is
6= 0). This implies that the critical points of f are isolated. Assuming a local
coordinate system, in which f = f(x1, x2), we have that ∇f = ( ∂f

∂x1

, ∂f
∂x2

) and

Hesspf = [ ∂2f
∂xi∂xj

(p)]2i,j=1
The number of negative eigenvalues of Hesspf is

called the index of a critical point p. In 2D, there are three types of non-
degenerate critical points. A critical point p is a minimum, a saddle, or a
maximum when p has index 0, 1 or 2, respectively. An integral line of a function
f is a maximal path which is everywhere tangent to the gradient vector field
∇f of f . The classical Taylor formula shows that integral lines follow the
gradient directions in which the function has the maximum increasing growth.
Integral lines cannot be closed, nor infinite, and they cover M. An integral line
which connects a minimum to a saddle, or a saddle to a maximum is called a
separatrix. From each saddle s there are two separatrices which connect s to
maxima, and two separatrices which connect s to minima.

3 Partitions of a Manifold

In this section, we review and relate two ways to partition a manifold M into a
cell complex. One is a general subdivision S (and an overlay of S and its dual
S∗), and the other is a Morse complex (and a Morse-Smale complex). These
two partitions have the same structural properties, but a Morse-Smale complex
has an additional information content, related to elevation values.

3.1 Morse and Morse-Smale complexes

Let f : M → R be a Morse function, where M is a compact 2-dimensional man-
ifold. Integral lines that converge to (originate from) a critical point p of index
i form an i-cell ((2-i)-cell) called a stable or descending (unstable or ascending)
manifold of p. The ascending (descending) manifolds are pairwise disjoint and
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Figure 2: A generic 2-cell of a Morse-Smale complex (left). Two types of 2-cells
glued along the boundary: an isolated mountain (middle), and a crater (right).

decompose M into open cells which form a complex, since the boundary of
every cell is the union of lower-dimensional cells. Such complexes are called as-
cending (unstable) and descending (stable) Morse complexes. A Morse function
f : M → R is called a Morse-Smale function if the ascending and descending
manifolds intersect transversally. This means that such manifolds cross when
they intersect, and that the crossing point is a saddle. Cells that are obtained
as the intersection of the ascending and descending complex of a Morse-Smale
function f decompose M into a Morse-Smale complex. Cells of dimension 0,
1 and 2 in this complex are called vertices, edges and regions, respectively.
Each saddle s is incident to four separatrix lines, two ascending (connecting
s to maxima) and two descending (connecting s to minima), which alternate
around s. Each region of a Morse-Smale complex is a quadrangle (2-cell) whose
vertices are critical points of f of index 0,1,2,1 (minimum, saddle, maximum,
saddle), in this order along the boundary. For a Morse-Smale function f , there
are three possible types of regions, also called slope districts in [7], and they
are illustrated in Figure 2. The first one is a generic quadrangle, in which all
the four vertices are distinct, Figure 2 (left), and the other two, glued along
the boundary, correspond to an isolated mountain or a crater, Figure 2 (mid-
dle) and (right), respectively. Each 2-cell of a Morse-Smale complex consists
of integral lines which originate from the same minimum, and converge to the
same maximum.

3.2 Subdivisions, Dual Subdivisions

We will consider the case of a compact orientable 2-manifold M with a fixed
orientation. For subdivisions of general compact 2-manifolds, see [2].

A subdivision S of M is a partition of M into a finite number of open
elements: vertices (0-cells), edges (1-cells), and faces (2-cells), such that the
boundary of every face is a closed path of (not necessarily distinct) edges and
vertices. The closure of a face need not be homeomorphic to a closed 2-disk, but
every vertex and every edge must be incident to some face. Thus, S is a regular
2-dimensional cell complex with domain M. An example of a subdivision of
the extended plane is illustrated in Figure 1 (left).

Let us now consider a subdivision S in which every edge e is directed. This
is necessary if we want to distinguish the two faces incident at e as left and
right face, and the two vertices incident at e as initial and terminal vertex.
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Figure 3: An edge e in a subdivision, with basic edge functions.

Let eSym be the same edge as e, but with opposite direction, let eOrg and
eDest be the initial and the terminal vertex of e, and let eLeft and eRight

be the two adjacent faces on the left and right side of e. With eLnext and
eOnext we denote the next counterclockwise edge e1 around eLeft such that
e1Left = eLeft, and the next counterclockwise edge e2 around eOrg such that
e2Org = eOrg. These notions are illustrated in Figure 3.

Two subdivisions S and S∗ are dual to each other if for each edge e of either
subdivision there is an edge eRot of the other such that (i) eRot2 = eSym, (ii)
(eSym)Rot = (eRot)Sym, and (iii) eLnext = eRot−1OnextRot. This corre-
spondence of edges of S and S∗ establishes a correspondence between (primal)
faces and vertices of S and (dual) vertices and faces of S∗, respectively. Two
vertices of one subdivision are connected by an edge if the corresponding faces
of the other are adjacent along an edge. When each vertex of one subdivision is
in the corresponding face of the other, and an edge crosses only its dual, then
S and S∗ are strict duals. For a subdivision S illustrated in Figure 1 (left), its
dual S∗ (together with S) is illustrated in Figure 1 (right).

If S and S∗ are overlayed by adding one (skew) vertex ve on each edge e of
S and one (dual) vertex vf in each face f of S, and then connecting vf by new
edges to every vertex (primal or skew) on the boundary of f , a quadrangulation
of M is obtained, in which every quadrangle has a primal, a skew, a dual, and
a skew vertex, in this order, along its boundary.

3.3 Comparison of the two partitions

Information contained in a Morse-Smale complex may be divided in three parts:
geometry (position of critical points and separatrix lines), topology (adjacency
and incidence relations between cells of the complex), and elevation (function
values at points of M). Information contained in a subdivision has only two
parts: geometry and topology. Here, we are interested in the topological part
of the information content of the two partitions introduced above. We show
that a Morse-Smale complex and a pair of overlayed dual subdivisions have
basically the same topological (structural) properties.

Descending (ascending) Morse complexes of a Morse-Smale function f may
be viewed as a subdivision S, in which minima (maxima) correspond to vertices,
maxima (minima) correspond to faces, and saddles correspond to edges of S.



A Morse-Smale complex of f may be viewed as an overlay of S and its dual
S∗, where primal, dual and skew vertices correspond to minima, maxima and
saddles.

Conversely, a subdivision S may be viewed as a decomposition of M into
descending (ascending) cells of maxima (minima) of some Morse-Smale function
f . A pair of dual subdivisions may be viewed as an overlay of descending and
ascending Morse complexes of f , where saddle points are at the intersection of
primal and dual edges of S.

If f is a Morse (and not a Morse-Smale) function, then it may happen that
a separatrix line connects two saddles, and there is no straightforward way to
model an ascending (descending) Morse complex of f using a subdivision.

4 Refinement and Simplification Operations

We describe two analogous modifications of the structures we reviewed above,
that is, on subdivisions and Morse-Smale complexes. Then we point out the
connection between these operations on different structures, and we show that
they are basicaly the same operation with different interpretation.

4.1 Operations on a Morse-Smale complex

The topology of a Morse-Smale complex can be simplified by an elementary
operation which removes a pair of adjacent critical points, together with all
the incident edges, and reconnects the remaining points, thus transforming one
Morse-Smale complex into another, with fewer number of vertices. This oper-
ation is usually called the cancellation of critical points. The pair of removed
critical points consists of a saddle and a maximum, or a sadle and a minimum.
Thus, a cancellation does not change the Euler characteristic χ(M) of M, which
can be expressed using the number of maxima, saddles and minima of a Morse-
Smale function f defined over M as χ(M) = |maxima| − |saddles|+ |minima|.
The removal of the saddle s and a minimum p, together with all the incident
edges, from the initial Morse-Smale complex, illustrated in Figure 4 (top left),
leaves the situation illustrated in Figure 4 (top right).

The points at the other end of the removed edges are affected by this re-
moval, and they need to be reconnected. A saddle si, which was adjacent to p,
will be connected by an edge to the minimum q. Intuitivelly, it can be imagined
that both points s and p are moved towards q, and finally identified with it.
Simultaneously, edges incident at s are deleted, and the edges (p, si), incident
at p and connecting it to the remaining saddles si at the boundary of its as-
cending 2-cell, are extended to the edges (q, si), connecting those saddles to q.
In other words, edge (q, si) is obtained by geometrically concatenating edges
(q, s), (s, p) and (p, si), while keeping the edges (q, si) topologically separated,
as illustrated in Figure 4 (bottom left). For better visual inspection, in Figure
4 (bottom right) the same Morse-Smale complex is represented, with edges
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Figure 4: (top left) An initial Morse-Smale complex MS. (top right) MS with
saddle s, minimum p, and all incident edges removed. (bottom right) Resulting
Morse-Smale complex after the reconnection of saddles si to the other minimum
q by concatenating paths. (bottom right) Resulting Morse-Smale complex with
edges drawn apart.

(q, si) drawn apart. Note that the cancellation operation described above is
not feasible (cannot be applied) to a saddle s and a minimum (maximum) p,
if the region is of the type illustrated in Figure 2 (middle) (Figure 2 (right)).

The inverse of the cancellation operation is called anticancellation. It in-
troduces a pair of critical points, consisting of a minimum (maximum) p and
a saddle s (thus, χ(M) is invariant), and the corresponding edges, in such a
way that the correct structure of the Morse-Smale complex is maintained. This
means that, together with p and s, the two maxima (minima) t and r, which
will become adjacent to s after anticancellation, have to be specified. It is
illustrated in Figure 4 viewed in the reverse order.

A feasible (anti)cancellation does not change the structural properties of
a Morse-Smale complex, or the Euler characteristc χ(M) of M. When an
(anti)cancellation is applied to a Morse-Smale complex, each saddle remains
connected to two minima and two maxima, each region remains a quadrangle,
and so on. The only restriction on the application of a feasible (anti)cancellation
is elevation induced, i.e., when choosing a pair of critical points for an (anti)
cancellation, care has to be taken that each newly introduced path between a
saddle and a maximum (minimum) is ascending (descending).

4.2 Euler Operations on Subdivision

Euler operations derive the name from the fact that they maintain the Euler
formula V − E + F = χ(M) which interrelates the number V of vertices, E
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Figure 5: (Anti)cancellation of maxima interpreted as (make)killFaceEdge

(left), and (anti)cancellation of minima interpreted as (make)killV ertexEdge

(right).

of edges and F of faces of a subdivision S of M with the Euler characteristic
χ(M) of M. Euler operations do not change the topological type of M, but
they change the number of elements (vertices, edges and faces) of a subdivision.
There are four Euler operations, two of which involve vertices and edges, and
the other two involve faces and edges.

For makeFaceEdge, a face ft and two vertices vp and vq incident at ft have
to be specified. It makes a new face fr and an edge es such that vp and vq are
initial and terminal vertices of es, respectively, and ft and fr are faces left and
right from es, respectively. This operation increases the number of faces and the
number of edges of S by one. killFaceEdge is the inverse of makeFaceEdge.
A directed edge es (such that esLeft 6= esRight) has to be specified. When
esLeft = esRight (when es is a bridge), this operation is not feasible because
it would disconnect S (and thus M), and change the topological type of M.
This corresponds to an attempt to cancel a maximum in the region illustrated
in Figure 2 (right) in a Morse-Smale complex. Edge es and its right face vr are
deleted, and its left face ft substitutes fr in all the edges incident at fr. This
operation decreases the number of faces and the number of edges of S by one.
We illustrate make(kill)FaceEdge in Figure 5 (left).

For makeV ertexEdge, a vertex vq and two faces ft and fr incident to vq

have to be specified. It makes a new vertex vp and an edge es such that vq

and vp are initial and terminal vertices of es, respectively, and ft and fr are
faces left and right from es, respectively. This operation increases the number
of vertices and the number of edges of S by one. killV ertexEdge is the inverse
of makeV ertexEdge. A directed edge es (such that esOrg 6= esDest) has to
be specified. When esOrg = esDest (when es is a loop), this operation is not
feasible because it would merge the faces ft and fr into one, thus reducing to
a killFaceEdge, i.e., to a cancellation of maxima and not of minima. This
corresponds to an attempt to cancel a minimum in the region illustrated in
Figure 2 (middle) in a Morse-Smale complex. Edge es and its terminal vertex
vp are deleted, and its initial vertex vq substitutes vp in all the edges incident
at vp. This operation decreases the number of vertices and the number of edges
of S by one. We illustrate make(kill)V ertexEdge in Figure 5 (right).



4.3 Comparison of Modification Operations

If we interprete ascending and descending Morse complexes of a Morse-Smale
function f as a subdivision S and its dual subdivision S∗, where minima,
saddles and maxima correspond to vertices, edges and faces of S, respectively,
then cancellation and anticancellation can be interpreted in terms of Euler
operators on S.

Specifically, a cancellation of maximum r through a saddle s in t corresponds
to merging two faces fp and fq into one by removing an edge from S, and thus
to the operation killFaceEdge(es), where es is the appropriately oriented edge
(such that esLeft = ft) of S associated with s. An anticancellation of r from
t through s corresponds to spliting a face fq in two faces, by adding an edge
to S, specified by its endpoints vp and vq . It corresponds to the operation
makeFaceEdge(ft, vp, vq) where ft is the face associated with t, and vp and vq

are the vertices of S associated with minima p and q which become adjacent to
s after anticancellation. We illustrate (anti)cancellation of maxima (interpreted
as (kill)makeFaceEdge) in Figure 5 (left).

Similarily, a cancellation of a minimum p and a saddle s in q may be viewed
as merging of p and s in q or, equivalently, as edge collapse of the edge es as-
sociated with s. Thus, it corresponds to operation killV ertexEdge(es), where
es is the appropriately oriented edge (such that esDest = vp) of S associ-
ated with s. An anticancellation of p from q through s corresponds to vertex
split of q, and the faces which become adjacent to the newly introduced edge
es must be specified. Thus, an anticancellation corresponds to the operation
makeV ertexEdge(vp, fr, ft) where vp is the vertex associated with p, and fr

and ft are the faces of S associated with maxima r and t which become ad-
jacent to s after anticancellation. We illustrate (anti)cancellation of minima
(interpreted as (kill)makeV ertexEdge) in Figure 5 (right).

Let us now highlight the benefit of interpreting operations on a Morse-Smale
complex MS as operations on a subdivision S. In a region based approach, the
result of an application of an operation on MS may be viewed as a replacement
of an arbitrary set of 2-cells of MS with another set of 2-cells, which cover the
same piece of M, and have the same boundary, with the same set of edges
and vertices. This approach takes into account the part of M covered by the
removed cells, and does not take into account the highly regular and specific
structure of a Morse-Smale complex. Interpretation of MS as a pair of dual
subdivisions S and S∗, enables us to shift the attention from 2-cells to 1-cells
(edges), that is, from region to boundary, and to use particular characteristics
of the partition of M induced by MS. In a region-based approach, it is neces-
sary to encode dependencies between modifications, based on the intersection
of the regions covered by the 2-cells involved in the modifications, as in [1],
where the region of influence of a cancellation of a saddle s is defined to be
the region covered by four quadrangles which have s as one of the vertices. If,
on the contrary, a Morse-Smale complex is regarded as a pair of dual subdivi-
sions of M, modifications can be expressed as operations on edges of S, and it



becomes obvious that any two feasible modifications are independent, i.e., any
two modifications can be performed in an arbitrary order, as long as all the
newly introduced paths remain monotonic in elevation.

5 Concluding Remarks

A Morse-Smale complex is a data structure used for modeling of the morphology
of a scalar function f . Starting from a full resolution Morse-Smale complex,
and using simplification and refinement operations, an adaptive multiresolution
representation of the complex can be obtained. Interpreting a Morse-Smale
complex as a pair of dual subdivisions, a boundary based approach is addopted
instead of a region based approach. It is seen that any two feasible modifications
(refinement or simplification) of a Morse-Smale complex are independent, and
can be performed in an arbitrary order. The only restriction which has to be
imposed when performing the operations is elevation induced, that is, all the
paths between a minimum and a saddle, and between a saddle and a maximum,
have to be monotonic, while there are no restrictions related to the structure
of a Morse-Smale complex.

In the future, we plan to investigate simplification and refinement operations
on a 3-dimensional Morse-Smale complex.
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