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Abstract: There is presented a short overview on some results related the theory of
non-additive measures and the corresponding integrals occurring in several important
applications.
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1 Introduction

Several types of integrals with respect to non-additive measures were devel-
oped for different purposes, [1, 5, 6, 15, 16]. We present some results related
the theory of non-additive measures and the corresponding integrals important
in several important applications. Many of these applications are related to
functions defined on finite sets and therefore we restrict ourselves here on the
finite case. We present also some results on special class of non-additive mea-
sures so called pseudo-additive (decomposable) measures and the corresponding
integrals, which give a base for the so called pseudo-analysis. There are many
important applications, for example in optimization problems, decision making,
nonlinear partial differential equations, nonlinear difference equations, optimal
control, fuzzy systems, [11, 12, 15, 16].

2 Non-additive measures

Let us consider I = [0,1] and N = {1,...,n}. A set function m on N is a
function from 2V to R. A subset A C N is equivalently denoted by (14,04¢) €
[0,1]™, or by its characteristic function 14 defined over N. We denote x =
(21,...,zy). Using the above equivalence, any set function m bijectively corre-
sponds to a pseudo-Boolean function fn, : {0,1}" — R by fp(z) = m(4,)
for all x € {0,1}", where Ax = {i € N | x; = 1}. Conversely, to any
pseudo-Boolean function f corresponds a unique set function my such that



mys(A) := f(1a,04c). Pseudo-Boolean functions are widely used in operations
research. Cooperative game theory is devoted to a particular class of set func-
tions, called transferable utility games in characteristic form. We will call them
games or non-additive measure for simplicity. In the context of game theory,
the set N is the set of players. A game m : 2V — R is a set function satisfying
m(2) = 0. Useful examples of games are unanimity games. For any A C N,
the unanimity game u4 on N is defined by:

1, ifBDA
B) .= ’ -
ua(B) { 0, otherwise.

Note that ug is not a game since ug (@) = 1. A capacity m : 2V — R, is a
game such that u(A) < p(B) whenever A C B (monotonicity). A capacity is
normalized if ;(N) = 1. Capacities are monotonic games, and were introduced
originally by Choquet in 1953. They were rediscovered by Sugeno in 1974 under
the name fuzzy measure [20].

Important connection with aggregation functions can be described in the
following way, see [6]. Suppose we use as an aggregation function the weighted

arithmetic mean
wi1x] + -+ wpTy

w—1+-+w,

with respect to some weight vector w € [0,1]". It is easy to relate w to
the values taken on by WAM,,, using particular vectors in [0, 1]™, namely 1;:
WAM (1;) = w; for all 4 € N. This means that the value of function WAMy,
on [0,1]™ is solely determined by its value at the endpoints of the n dimen-
sions, which represents the weight of each dimension. In fact, the exact way
WAMy (x), x € [0,1]™, is determined from WAMy,(1;), ¢ = 1,...,n, is linear
interpolation. One may construct more complicated aggregation functions A
by using more points in [0,1]™ to determine A. A natural yet simple choice
would be to take all vertices of [0,1]", namely {14} acn. These include the
previous endpoints of dimensions. Doing so, we have defined a set of weights

{walacn, by

WAM,, (x) =

Aw(lA):WA, AQN

It remains to construct Ay on [0, 1]™ by some means (e.g., linear interpolation),
using these points. By analogy with the previous case, w, is the weight of
the subset A of dimensions. In the case of WAMy,, the weight vector had
no peculiar property, beside non-negativeness and normalization ), w; = 1. If
weights are assigned to subsets of dimensions, then some properties are natural,
especially if dimensions represent criteria or attributes, or individuals (voters,
experts). In this framework, x € [0,1]" is a vector of scores, and Ay (x) is
the aggregated overall score, reflecting the score of each criterion or individual.
Hence, Aw(14,04c) is the overall score of an object having the maximal score
for all criteria (individuals) in A and the minimal score otherwise, therefore
the following properties are natural



(i) wg =0, since the object (1,0y) is the worst possible;
(ii) wy = 1, since the object (1x,04) is the best possible;

(iii) wa < wp whenever A C B, since object (15,0p:) is at least better on
one dimension than (14,04¢).

Considering w as a set function on N, what we have defined above is nothing
else than a capacity.

Let m be a set function on N, i.e., an element of R2". A transform is any
mapping T : R2" — R2". The transform is linear if for any msi,meo in R2"
and any A1, A2 € R it holds T'(A1m1 + Aama) = M T (mq) + AT (m2), and it is
invertible if T~' exists. There are several useful invertible linear transforms of
set functions. The best known one is the Mé6bius transform

p(A) = 3 ()N Blm(B).

BCA

o is said to be the Mobius transform (or Mobius inverse) of m. It is a linear
and invertible transform, and (@) = m(@). The Mobius transform has been
rediscovered many times. In the field of pseudo-Boolean functions, it appears as
coefficients in the multilinear polynomial form of any pseudo-Boolean function

f
f(x) = Z laT H xi] (x € {0,1}").

TCN ieT

In the field of cooperative game theory was found by Shapley in the form

p(A)= > mpup(A) (ACN),

i.e., any game (in fact, any set function) can be expressed in a unique way by
unanimity games.

3 Integrals

We consider from now on the Choquet integral as an aggregation function over
I™. First, we consider non-negative vectors.

Definition 1 Let m be a capacity on N, and x € R’t. The Choquet integral
of x with respect to m is defined by:

n

Cm(X) = Z(xc,(i) — x,,(i_l))m(A,,(i))

=1

with o a permutation on N such that z5(1) < Ty2) < -+ < Ty, with the
convention Ty () =0, and Ay = {0(i),...,0(n



It is straightforward to see that an equivalent formula is:
Cm(x) = Z To i) (M(Ao(i)) — M(As(iv1)));
i=1

with Ay (n41) := F. m need not to be monotone in order for the Choquet
integral to be well defined, so that we could take as well a game instead of a
capacity. Monotonicity of m is equivalent to monotonicity of the integral. Due
to definition of aggregation functions as monotone function satisfying bound-
ary conditions, in the case of aggregation functions we restrict to the case of
capacities. The same remark applies to subsequent definitions as well. Simi-
larly, only normalized capacities ensure that bounds of I are preserved, so that
a Choquet integral is an aggregation function if and only if m is a normalized
capacity.
The original definition, applicable to continuous spaces is the following.

Definition 2 Let f: Q — Ry, and m a capacity on Q2. The Choquet integral
of f with respect to m is defined by

(C’)/fdm = /Ooom({w€§2|f(w)>a})da.

The function m({w | f(w) > a}) is the decumulative function of m, non-
increasing by monotonicity of m.
The case of real integrands leads to several definitions.

Definition 3 Let x € R", m be a capacity on N, and denote by xT,x~ the
absolute values of positive and negative parts of X, i.e., XT :=xV 0 and x~ :=
(—x)*, where 0 stands for the null vector in R™.

(i) The symmetric Choquet integral of x with respect to m is defined by

Con () = Cpp(x1) — Cpru(x7).

(i) The asymmetric Choquet integral of x with respect to m is defined by

Con(7) := Con(xT) — Cmr(x7).

The asymmetric integral is taken as the classical definition of the Choquet inte-
gral for real-valued functions, hence no special symbol is needed to denote it. It
can be checked that if x is allowed to be in R™ in Definition 1, we get the asym-
metric integral. This is not the case for the continuous formula of Definition 2.
The symmetric integral has been proposed independently by Sipos. Although
apparently more natural, it leads to more complicated formulas. These two
integrals take their name from the following property. For any x € R™,



3.1 The Sugeno integral

The Sugeno integral was introduced by Sugeno in 1972 [20], as a way to compute
the expected value of a function with respect to a non-additive probability
(called by Sugeno a “fuzzy measure”, with the intention to give a subjective
flavour to probability). Although mathematically very similar since, they differ
only by their mathematical operators (sum and product being replaced by
maximum and minimum respectively), it is more difficult to introduce in a
natural way the Sugeno integral.
First, we consider non-negative vectors.

Definition 4 Let m be a capacity on N, and x € [0, u(N)]™. The Sugeno
integral of x with respect to m is defined by

Sm(x) == \/ [Zo() A(Agi))]

with o a permutation on N such that T,(1) < Ty2) < -+ < To(n), with the
convention Ty =0, and Ay = {o(i),...,0(n)}.

The above definition requires only comparison operators, no arithmetic ones.
Hence, the definition works on any totally ordered set I, without additional
structure.

We give the definition in the continuous general case [15, 20].

Definition 5 Let m be a capacity on Q, and f : Q — [0,m(Q)]. The Sugeno
integral of f with respect to m is defined by

(9) / fam=swp (anm{w]fw) > a})

a€e[0,m(£2)]

4 Pseudo-additive measures and the correspond-
ing integrals

For the range of a set function instead of the field of real numbers in (Maslov,
Samborski [12], Pap [13, 14, 15, 16], Sugeno, Murofushi [21]) it is taken a semi-
ring on the real interval [a,b] C [—o0, 00|, denoting the corresponding oper-
ations as @ (pseudo-addition) and ® (pseudo-multiplication). This structure
is applied for solving nonlinear equations (ODE, PDE, difference equations,
etc.) using now the pseudo-linear principle (Litvinov, Maslov [11], Maslov,
Samborski [12], Pap [14, 15, 16]). Based on semiring structure it is devel-
oped in [13, 14, 15, 16] the so called pseudo-analysis in an analogous way as
classical analysis, introducing @-measure, pseudo-integral, pseudo-convolution,
pseudo-Laplace transform, etc. Here we shall restrict on the interval [0,1] and
in this way pseudo-addition reduces on a triangular conorm and the pseudo-
multiplication on a uninorm (or specially on a t-norm).



Definition 6 Let S be a t-conorm. A mapping m : 2N — [0,1] is called
an S-measure (pseudo-additive measure, decomposable measure) if m(@) =
0,m(N) =1 and for all A, B € 2V with AN B = @ we have

m(AU B) = S(m(A), m(B)).

Based on the structure ([0,1],S,U), where S is a continuous t-conorm and
U a uninorm with the neutral element e and conditionally distributive with
respect to S , there is developed in [8, 9] the so called (S, U)-integral.

Denote by M the set of all functions from N to [0,1]. As usual, a (step)
function f : N — [0,1] is a function which assumes only finitely many values.
If Range(f) = {ai,a2,...,a,} with a; # a; whenever i # j, and if A; =
f~'({a;}), then there is a canonical representation of f given by

f=S Ui 150) 1)

where
1S’U(x) _Je forxz € A
A ' 0 otherwise.

We have U(a, 1f’4’U) = aly, where

1A($):{ 1 forze A

0 otherwise.

Definition 7 Let m : 2V — [0,1] be an S-measure.

(i) Given a partition C = {Cy | k € K} the (S,U)-integral of a function
f: N —[0,1] (which is represented as in (1)) is defined by

(CHS))

fdm:= § ( g U(a;, m(A; ﬂCk))).

N keK “i=1

(ii) The (S,U)-integral of a function f : N — [0,1] over a set A € 2V is

defined by
(S,U) (S,U)

fdm = u@%Y, f)dm.
A N

The basic properties of (S, U)-integral are contained in [9].

For a function f : N — [a,b], —00 < a < b < o0, the integral introduced in
[12, 13] with respect to a semiring ([a, b], ®, ®) can be reduced by a bijection
@ : [a,b] — [0,1], choosing a suitable t-conorm S corresponding to the operation
@, on an (S, U)-integral with respect to an S-measure and a uninorm U or t-
norm T corresponding to the operation ©.

Example 1 (i) For [a,b] = [0,00] we obtain the integral introduced in
Sugeno, Murofushi [21], and for ([a,b],®,®) = ([0,00],4+,) we again
come back to the classical integral.



(ii) If the operation @ in the semiring ([a, b], &, ®) is not idempotent, then the
operations @ and ® are generated by some uniquely determined strictly
increasing bijection g : [a,b] — [0, cc] via

oy = g '(g9(x)+9),
oy = g 'g(@)g(y)).

The corresponding (@, ®)-integral was studied in Pap [13] (called g-
integral in [14]), and it has the special form

[ 1o an=5( [ wonagom)

where the integral on the right hand side is the classical integral. If gom
is a probability on N = {1,2,...,n} and a function f : N — [0,1] is
given by f(i) = x;,4 = 1,2,...,n, then the corresponding g-integral has
the following form

@ n
/N fodm=g (; wm(n)) ,

which the weighted quasi-arithmetic mean with weights w; = g(m({i}),
such that Y1 w; = 1.

5 The Benvenuti integral

Benvenuti integral is based on the chain representation (comonotone represen-
tation) of input vectors and two binary operations @ and @, see [2]. For a
constant b € ]0, o], operation @ : [0,b]? — [0,b] is supposed to be a continu-
ous t-conorm, i.e., an associative continuous binary aggregation function with
neutral element 0. For another constant ¢ € |0, 00] (the case ¢ = b is possible
and most frequent case) operation ® : [0,b] x [0, c] — [0,b] is a non-decreasing
binary operation which is right-distributive with respect to @, i.e.,

(udV)Ow=(uOv)d® (vVOw)

for all u,v € [0,b] and w € [0,¢]. Moreover, define a binary operation © :
[0,b]2 — [0, b] associated to & by

uOv=1inf{t € [0,0] |[vDt > u}
(compare [22]).

Definition 8 For a firedn € N, let m : 2V
(capacity). Benvenuti integral BE:© : [0, b]™

— [0, c] be a monotone set function
— [

,b] is given by

B2O(x) = @ (23) © 2(i—1)) © m(Ag)).



Many important special cases are in the following example.
Example 2 (i) Let b=c=00,® = +,® = - on [0,00]. Then B}, = C,.
(11) Let b=c= 13@ = \/7® = A. Then Br\{z’/\ = Sm

(iii) Let b = c=1,& = Sp (probabilistic sum), i.e., u®v = u + v — uv, and
® :[0,1]2 — [0,1] is a uninorm generated by a multiplicative generator
©:]0,1] — [0,1] given by p(z) = —log(1l — z), i.e.,

u @ v = exp(—log(l —u)log(l —v)),
and the neutral element of ® is e = 1 — exp(—1). Then
B 9(x) = ¢ (Copom(pox)),
i.e., Benvenuti integral is a (p-transform of the Choquet integral.

(iv) Let b=c=1,®& = V,® = -. Then By’ (x) = max;(w; - z;), where x; =
f (@), gives the Shilkret integral [17] (where the integral was considered
with respect to Sp-measures).

For more details see [2].

6 Measure based aggregation functions

A general unified approach to fuzzy integrals is given in [10]. For any fuzzy
measure i defined on Borel subsets of the open unit square with uniform mar-
ginals, i.e.,

110, 2[x]0,1[) = p(]0, 1[x]0, 2[) = =

for all z € [0, 1], the following functional was introduced: for m a fuzzy measure
on 2V and f: N — [0,1],

Lum(f) = p({(z,y) €10,1[* | y <m(f > x)}) (2)

If ;1 is a probability measure on Borel subsets of |0, 1[?, then it is in a one-to-one
correspondence with a 2-copula C. Thus we can use also notation ¢, for the
integral introduced in (2), and then it holds

I

s
Il
=

Iem(f) = ) (Clai,m(f > @7)) = Clai,m(f > wiy,))) (3)

and equivalently also

I

Iea(f) = ) (Claf,m(f > 7)) = Clai_y, m(f > 7)), (4)

i=1



where 2} is the i-th order statistics form the sample (f(1),..., f(n)) and z{, =
0,2;,,, = co by convention.

For the product copula I the corresponding integral Iy is just the Choquet
integral and formulas (3) and (4) are two equivalent forms for this integral on
N given in [10]. Moreover, IT,, is the Sugeno integral.
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