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Abstract: The paper presents a general error model for coordinate measuring machine is 
given. To demonstrate the generalaty of the mode lit is applied to a coordinate measuring 
machine. Description of the calibration for determining the error map of the measurin 
volume is given. In order obtain continouosdescription of the error a regression spline 
volume is fitted to the discrete values. 
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1 Introduction 

Substantional work has been carried out in the last years on the development of 
error models for geometric, kinematic, and thermal errors. However, most of the 
earlier applied analytic geometry, vector representation and error matrices. More 
recent works relied on the use of rigid-body kinematics in connection with with 
homogenous transformation matrices [5, 9, 10]. Although, in principle, all these 
techniques could yield a model for a given machine, only the latter has the 
potential to facilitate a simple error model formulation for an arbitrary machine 
configuration. 

In this paper the general kinematic error model will applied to a coordinate 
measuring machine and an algorithm for determining the parameters for 
calculating the eror description functions will be given. 

2 General Kinematic Error Model 

A linear stage of  precision machinery is expected to travel along a straight line 
and stop at a predefined position. However in the practiced the actual path deviate 



Gy. Hermann • Volumetric Error Correction in Coordinate Measurement 

 
410 

from the straight line due to the geometric errors of the guideways and it results 
also in angular errors as it is given in Fig. 1. 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1 
Representation of the error components of a linear stage (abstract and actual carriage) 

For each axis a transformation matrix can be used to describe in homogenious co-
ordinates the deviations from the ideal motion. The general form of a 
transformation is given by: 
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Where dx, dy and dz are the translational and Φ, θ and Ψ are the rotational 
components and s respectively c are short for sin and cos. 

In case of the coordinate table the angular errors are very small, and all the errors 
are position dependent the following approximation can be made: 
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Analog results can be derived for the y and z axis. Note that only the translational 
kinematic components are described in the form of homogenious transformations, 
but the rotational components can presented on a similar way. These components 
are called guided element. The guided elements are linked by socalled connecting 
elements, which can be represented by matrices with similar structure with only 
constant elements. The squarness or perpendicularity error can be represented by a 
socalled shear matrix of the following form, dependent on which axis is taken as a 
reference. Here the z axis was taken as a reference. 
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The resulting error matrix can be obtained by multiplying the individual matrices 
in the sequence as they follow each other in the kinematic chain. 

A traditional co-ordinate measuring machine consists of three translational 
components x, y and z, and a probe is attached to the end of the z component. 
Usually the probe can be considered as a constant translational transformation. 

Performing distance measurement in the measuring volume of the co-ordinate 
measuring machine we observe the relative change of the probe tip, therefore only 
the relative deviations are of interest. 

3 Outline of the Investigated Construction 

The conventional practice of stacking linear guided systems to form an X-Y table 
has inherent errors which are difficult to compensate. For many reasons ultra 
precise X-Y tables are guided by a flat reference surface. These tables usually 
employ vacuum or magnetically preloaded air bearings. The advantage of 
preloaded air bearings is that only one flat guide surface is necessary, whereas the 
opposed bearing preloading requires two flat guide surfaces that are parallel. Other 
advantages of the air-bearing are the zero static friction which makes infinite 
resolution and the very high repeatability possible. Contrary to rolling element 
bearings air bearings average the errors of the guide surface finish and 
irregularities. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
The construction of the CMM to be investigated 
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The carriage consists of two nested tables; each of them has four legs which in 
turn rests on vacuum preloaded air bearings. The reference plate is lapped to an 
accuracy of 0,5 µm. The axes are driven by piezomotors. The position are 
determined by an incremental two co-ordinate optoelectronic measuring system, 
having 0,05 μm resolution, attached to the bottom face of the inner table. This 
results in a light weight construction, which in turn ensures fast (acceleration up to 
20 m/s2) and accurate positioning (less than 1 μm). 

The probe is attached to a pinole running in an air bushing driven by a piezo 
motor, with approximately 5 nm resolution. The displacement is measured by a 
linear optical scale. 

4 Kinematic Error Model of the CMM 

4.1 The Carriage 

 
Figure 3 

Schema of the carriage 

The error motions of the carriage are determinied by the surface flatness of the 
granite refrence surface. The vacuum preloded air bearings average the errors of 
the guide surface finish and irregularities. The reference surface determines the 
role and pitch error of the carriages. The straightness of the guideways determine 
the yaw error. However because the carriage is supported on both side by air-
bearings the errors compensate each other to a certain extend. 
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The reading of the measuring system in the x- and y-directions does not exactly 
represent the relative axial displacement. Due to pitch variations between the dots 
and the electronic interpolation between these dots on the scale, a position 
dependent error is caused. The error of the two coordinate measuring system are 
included in the translational terms. 

The soul squarness or perpendicularity error in the horizontal (x,y) plane is cased 
by the the perpendicularity error between the dot-line in the x and y directions. 
Usually this can be negleted. 

4.2 The Pinole 

The pinole itself can be considered as a linear stage load with most of its errors. 
Only yaw do not introcude any error due to the spherical tip of the probe. This can 
be represented by the appropriate matrix. The errors of the measuring scale is a 
function of z displacement an is represented by the term Tz(z). 

5 Calibration 

To obtain the desired dat for software error correction the carriege and the pionole 
are calibrated idividially. 

5.1 Determination of the Carriage Errors 

The errors of  errors of the carriage are determined by using a single and a dual 
beam laserinterferometer and three capacitive sensors as it is given in the 
subsequent figure. Hereby the six degrees of freedom of  the carriage are taken 
away and the components of the position dependent error matrix can be computed 
in measuring point. The measuring points form a grid, with equal distance 
between the points along the main coordinate directions. 

5.2 Determination of the Pinole Errors 

To determine the error of the measuring system, a a single beam laser-
interferometer is used. The angular errors are measured by two pairs of capacitiv 
sensors. 
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Figure 4 

Calibration setup for the carriage 

6 Software Error Correction 

B spline tensor surfaces play an important role in computer aided surface design. 
A B-spline surface can be written as: 
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where it was assumed that one knot sequence is along u-lin while the other one in 
the t direction. This description can be extended to volumes: 
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If we consider the values V as the error vector and the parameters t, u and v as the 
coordinites of the ideal position then by determining the weights a continouos 
volumetric representation of the resulting errors can be obtained. The weigth are 
computed using a least square procedure. 
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Conclusions 

In the paper the application of  volumetric error correction methode is outlined for 
a specific coordinate measuring machine. The simultaneous determination of the 
error components of the carriage and the pinole was given. This measurment setup 
seems to be practical releiving us from some calculations and at the same time it 
includes the effect of gravitational and spring forces into the model. A novell 
technique for derivating the continouos parametric error description from the 
measured discreate values was introduced. After running the first tests this 
technique seems to promissing. 
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