
SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems

539

Chronological and Dependency-directed
Backtracking

Mirna Udovičić
Department of Mathematics, University of Belgrade

Abstract: There are two ways to work on the faulty plan: chronologi-cal and dependency-
directed backtracking. Chronological backtracking: you withdraw the most recen-tly made
choice, and its consequences;find an alternative at that choice point, and move ahead
again. Nonchronological backtracking: you withdraw the choices that matter.
There are many ways for doing search. One of the blind procedures is depth-first search.
Depth-first search is a tree search: all possible paths are arranged in a search tree. Depth-
first search: Given that one path is as good as any other, one way to find a path is to pick
one of the children at every node visited, and to work forward from that child. Other
alternatives at the same level are ignored completely, as long as it is possible to reach the
goal. Depth-first search is efficient when unproductive partial paths are not too long.

1 Chronological Backtracking

Part of the depth-first procedure that responds to dead ends is called chronological
backtarcking. Chronological backtracking is one way to work on a faulty plan; it
begins as soon as a dead end is detected. The procedure is to withdraw the most
recently made choice, and its consequences, to select an alternative at that choice
point, and to move ahead again. If all the alternatives at the last choice point have
been explored already, then go further back until an unexplored alternative is
found.

The procedure is the following:

 ⋅ Whenever you reach a dead end,

 ⋅ Until you encounter a choice point with an unexplored alternative,

 ⋅ Withdraw the most recently made choice

 ⋅ Undo all consequences of the withdrawn choice

 ⋅ Move forward again, making a new choice

M. Udovičić • Chronological and Dependency-directed Backtracking

540

The problem with chronological backtracking is clear: many of the withdrawn
choices may have nothing to do with why the dead end is a dead end. Thus,
chronological backtracking can be inefficient. In real problems, it can be
impractical.

2 Nonchronological Backtracking

Another way to work on the faulty plan is to withdraw the choices that matter (the
choices on which the dead end depends).

The procedure for identifying relevant choices is called dependency-directed
backtracking, or nonchronological backtracking.

The procedure is:

 ⋅ Whenever you reach an impasse,

 ⋅ Trace back through dependencies,identifying all choice points that may
have contributed to the impasse.

 ⋅ Using depth-first search, find a combination of choices at those choice
points that break the impasse.

Thus, nonchronological backtracking is an efficient way to find compatible
choices, as long as there is a way of tracing back over dependencies to find the
relevant choice points.

3 One Example of Nonchronological Backtracking:
Weekly Schedule

Suppose we are given the next problem:

Each day of the week involves a set of choices for:

 1 entertainment

 2 exercise

 3 study

 ⋅ Tuesday, Wednesday and Thursday are study days.

 ⋅ Monday and Friday are exercise days, and also entertainment days.

SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems

541

Monday Tuesday Wednesday Thursday Friday
exercise study study study exercise

entertainment entertainment

Exercise choices are:

exercise exercise units expenses
walking 5 $0
jogging 10 $0

working out at a club 15 $20

Entertainment choices are:

entertainment entertainment units expenses
going to the restaurant 2 $20

reading a book 1 $0
doing nothing 0 $0

Study choices are:

study study units
studying 0 hours 0
studying 2 hours 2
studying 4 hours 4
studying 6 hours 6

The problem is how to make a weekly schedule, having at least 6 hours of study, 2
units of entertainment, and 20 units of exercise. Expenses must be limited to $30
per week.

We will solve the problem using dependency-directed backtracking.

The first schedule could be any schedule, we have choosen this one:

Monday Tuesday Wednesday Thursday Friday

ex:walking study 0 h study 0 h. study 0 h. ex:walking

en:go to the r en:go to the r

This plan is faulty, because, for example, expenses are $40, but they mustn't be
bigger than $30. We must fix this plan, changing the choice which is connected
with the problem. In this plan, that choice could be:

 1 entertainment: going to the restaurant on Monday

 2 entertainment: going to the restaurant on Friday.

M. Udovičić • Chronological and Dependency-directed Backtracking

542

We will change one entertainment choice to reading a book, or to doing nothing.
After this change, the expenses are smaller, and it should check weather the new
plan is the solution.

The study days: Tuesday, Wednesday, and Thursday are independent from the
days for exercise and entertainment: Monday and Friday.

Thus, in the algorithm, there is a part Algorithm1 which gives a solution for
Tuesday, Wednesday and Thursday.

The algorithm is given:

Algorithm
 begin
 Algorithm1;
 mon.ex = walking;
 mon.en = going_to_the_rest;
 fri.ex = walking;
 fri.en = going_to_the_rest;
 change(mon,fri);
 end.
 //Algorithm1 solves the problem of study units
 Algorithm1
 begin
 thu.st = 0;
 wed.st = 0;
 thur.st = 0;
 p = 0;
 while (not p)
 begin
 thu.st = thu.st + 2;
 p = (thu.st +wed.st +thur.st == 6);
 if p break;
 wed.st = wed.st + 2;
 p = (thu.st +wed.st +thur.st == 6);
 if p break;
 thur.st = thur.st + 2;
 p = (thu.st +wed.st +thur.st == 6);
 end;
 end;
 int checking (mon,fri);
 begin
 if ((expenses ≤ 30) and (exerciseunits ≥ 20)
 and (entertunits ≥ 2))
 return 1;
 else return 0;

SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems

543

 end;
 // function which returns 1 if there is a solution, and prints the result
 int change(mon,fri)
 begin
 if (expenses > 30)
 begin
 if (fri.ex == working_at_a_club)
 begin
 fri.ex = jogging;
 p = checking(mon,fri);
 if p begin print(mon,fri);
 return 1;
 end;
 else begin p = change(mon,fri);
 if p return 1;
 end;
 end;
 if (fri.en == going_to_the_rest)
 begin
 fri.en = reading_a_book;
 p = checking(mon,fri);
 if p begin print(mon,fri);
 return 1;
 end;
 else begin p = change(mon,fri);
 if p return 1;
 end;
 end;
 if (mon.ex == working_at_a_club)
 begin
 mon.ex = jogging;
 p = checking(mon,fri);
 if p begin print(mon,fri);
 return 1;
 end;
 else begin p = change(mon,fri);
 if p return 1;
 end;
 end;
 if (mon.en == going_to_the_rest)
 begin
 mon.en = reading_a_book;
 p = checking(mon,fri);
 if p begin print(mon,fri);

M. Udovičić • Chronological and Dependency-directed Backtracking

544

 return 1;
 end;
 else begin p = change(mon,fri);
 if p return 1;
 end;
 end;
 end;
 //if expenses are allowed, we are checking other conditions

4 Implementation

The algorithm is implemented in the programming language C++.
 //Enumeration type is used in this program(for weekly //activities)
 enum vezbanje {setnja,trcanje,vezbaukl}
 enum zabava {veceranap,citknj,nista}
 //Class dani1 is used for Tuesday,Wednesday and //Thursday
 //Class dani2 is used for Monday and Friday
 class dani1 {
 int u;
 }
 class dani2 {
 vezbanje v;
 zabava z;
 int zadov;
 int jedinvezb;
 int ut;
 }

 int provera(dani2 pon, dani2 pet, int vezba, int zadov,int uktroskovi)
 { int p;
 p=((pon.jedinvezb+pet.jedinvezb >= vezba)&&
 (pon.zadov + pet.zadov >= zadov)&&
 (pon.ut+pet.ut <= uktroskovi));
 return p;
 }

 int zamena(dani2 pon, dani2 pet, int vezba, int zadov, int uktroskovi)
 { int q;
 int p;
 if (pon.ut + pet.ut > uktroskovi)
 {
 if (pet.v == vezbaukl)

SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems

545

 { pet.v = trcanje;
 pet.jedinvezb = 10;
 pet.ut = pet.ut – 20;
 q = provera(pon, pet, vezba, zadov, uktroskovi);
 if (q == 1) {
 cout << “ponedeljak” << pon.v <<
 “ “ << pon.z << endl;
 cout << “petak” << pet.v << “ “ <<
 pet.z << endl;
 return 1;
 }
 if (!q) { p = zamena(pon,pet, vezba, zadov, uktroskovi);
 if (p ==1) return 1;
 }
 }
 if (pet.z == veceranap)
 { pet.z = citknj;
 pet.zadov = 1;
 pet.ut = pet.ut – 20;
 ……
 //The rest of the function is similar to the beginning part;
 //the main difference is that we are checking other weekly
 //choices, changing them into other options (if that choices
 //cause a dead end)

 Input: study units: 6, entertainment units: 2, exercise units: 20, expenses: 30$
 Output: weekly schedule is:
 Monday: exercise = jogging
 entertainment = going_to_the_rest
 Tuesday: studying 2 hours
 Wednesday: studying 2 hours
 Thursday: studying 2 hours
 Friday: exercise = jogging
 entertainment = reading_a_book .

Literature

[1] Artificial Intelligence, Patrick Henry Winston

