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Abstract: In this paper hybrid intelligent control algorithm for biped locomotion is 
presented. The proposed structure of controller involves two feedback loops: model-based 
dynamic controller and fuzzy reinforcement learning feedback around Zero-Moment Point. 
The proposed new reinforcement learning algorithm is based on modified version of actor-
critic architecture for dynamic reactive compensation. The reinforcement learning 
architecture as external reinforcement use fuzzy evaluative feedback. Simulation 
experiments were carried out in order to validate the proposed control approach.The 
obtained numerical results served as the basis for a critical evaluation of the controller 
performance. 
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1 Introduction 

Dynamic bipedal walking is difficult to learn for a number of reasons. First, biped 
robots typically have many degrees of freedom, which can cause a combinatorial 
explosion for learning systems that attempt to optimize performance in every 
possible configuration of the robot. Second, details of the robot dynamics such as 
uncertainties in the ground contact and nonlinear friction in the joints must be only 
experimentally validated. Since it is only practical to run a small number of 
learning trials on the real robot, the learning algorithms must perform well after 
obtaining a very limited amount of data. Finally, learning algorithms for dynamic 
walking must deal with dynamic discontinuities caused by collisions with the 
ground and with the problem of delayed reward -torques applied at one time may 
have an effect on the performance many steps into the future. The detailed and 
precise training data for learning is often hard to obtain or may not be available in 
the process of biped control synthesis. Furthermore, a more challenging aspect of 
this problem is that the only available feedback signal (a failure or success signal) 
is obtained only when a failure (or near failure) occurs, that is, the biped robot 
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falls down (or almost falls down). Since no exact teaching information is 
available, this is a typical reinforcement learning problem and the failure signal 
serves as the reinforcement signal. For reinforcement learning problems, most of 
the existing learning methods for neural networks or fuzzy-neuro networks focus 
their attention on numerical evaluative information. But for human biped walking, 
we usually use linguistic critical signal, such as ‘near fall down’, ‘almost success’, 
‘slower’, ‘faster’ and etc., to evaluate the walking gait. In this case, using fuzzy 
evaluation feedback is much closer to the learning environment in the real world. 
Therefore, there is a need to explore porssibilities of the reinforcement learning 
with fuzzy evaluative feedback, as it was investigated in paper [1]. Fuzzy 
reinforcement learning generalizes reinforcement learning to fuzzy environment 
where only the fuzzy reward function is available. 

In this paper, a novel, integrated hybrid dynamic control structure for the 
humanoid robots is proposed, using the off-line line and on-line calculated 
complete model of robot mechanism. Our approach consists in departing from 
complete conventional control techniques by using hybrid control strategy based 
on model-based approach and learning by experience and creating the appropriate 
adaptive control systems. Hence, the first part of control algorithm represents 
some kind of computed torque control method as basic dynamic control method, 
while the second part of algorithm is modified GARIC reinforcement learning 
architecture [2], [3], [4] for dynamic compensation of ZMP ( Zero-Moment-Point) 
error. The goal of this paper is to propose the usage of fuzzy reinforcement 
learning for humanoid robotics. The reinforcement learning method proposed in 
this paper is based on the Actor-Critic architecture. In this paper, the external 
reinforcement signal was defined to be measure of ZMP error based on fuzzy 
linguistic variables. Internal reinforcement signal is generated using external 
reinforcement signal and appropriate stochastic gradient policy. The fuzzy 
evaluative feedback has aim to evaluate the degree of success for the biped 
dynamic walking by means of ZMP (zero moment point). 

2 The Model of the System 

2.1 Model of the Robot’s Mechanism 

The mechanism possesses 18 powered DOFs, designated by the numbers 1-18, 
and two unpowered DOFs (1’ and 2’) for the footpad rotation about the axes 
passing through the instantaneous ZMP position. Taking into account dynamic 
coupling between particular parts (branches) of the mechanism chain, one can 
derive a relation that describes the overall dynamic model of the locomotion 
mechanism in a vector form [5]: 
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where: P is the vector of driving torques at the humanoid robot joints; F 
 
is the 

vector of external forces and moments acting at the particular points of the 
mechanism; H 

 
is the square matrix that describes ‘full’ inertia matrix of the 

mechanism; h is the vector of gravitational, centrifugal and Coriolis moments 
acting at n mechanism joints; J is the corresponding Jacobian matrix of the 
system; n =20, is the total number of DOFs; q is the vector of internal coordinates. 

2.2 Gait Phases and Indicator of Dynamic Balance 

The robot’s bipedal gait consists of several phases that are periodically repeated 
[5]. Hence, depending on whether the system is supported on one or both legs, two 
macro-phases can be distinguished, viz.: (i) single-support phase (SSP) and (ii) 
double-support phase (DSP). Double-support phase has two micro-phases: (i) 
weight acceptance phase (WAP) or heel strike, and (ii) weight support phase 
(WSP). 

 
Figure 1 

Phases of biped gait 

Fig. 1 illustrates these gait phases, with the projections of the contours of the right 
(RF) and left (LF) robot foot on the ground surface, whereby the shaded areas 
represent the zones of direct contact with the ground surface. The indicator of the 
degree of dynamic balance is the ZMP, i.e. its relative position with respect to the 
footprint of the supporting foot of the locomotion mechanism. The ZMP is defined 
as the specific point under the robotic mechanism foot at which the effect of all the 
forces acting on the mechanism chain can be replaced by a unique force and all 
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the rotation moments about the x and y axes are equal zero. The deviations Δx
(zmp) 

and Δy
(zmp) 

of the ZMP position from its nominal position in x-and y-direction 
have a great influence in control synthesis. The instantaneous position of ZMP is 
the best indicator of dynamic balance of the robot mechanism. The ZMP position 
inside these ‘safety areas’ ensures a dynamically balanced gait of the mechanism 
[5] whereas its position outside these zones indicates the state of loosing the 
balance of the overall mechanism, and the possibility of its overturning. The 
quality of robot balance control can be measured by the success of keeping the 
ZMP Trajectory Within The Mechanism Support polygon. 

3 Hybrid Intelligent Control Algorithm with Fuzzy 
Reinforcement Learning Structure 

Biped locomotion mechanism represents a nonlinear multivariable system with 
several inputs and several outputs. Having in mind the control criteria, it is 
necessary to control the following variables: positions and velocities of the robot 
joints, ZMP position. In accordance with the control task, we propose the 
application of the algorithm of the so-called intelligent control based on the 
dynamic model of the complete system. 

 
Figure 2 

Block-scheme of the hybrid intelligent control of biped 
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In Fig. 2 a block-diagram of the intelligent controller for biped locomotion 
mechanism is proposed. It involves two feedback loops: (i) basic dynamic 
controller for trajectory tracking, (ii) intelligent reaction feedback at the ZMP 
based on fuzzy reinforcement learning structure. The synthesized dynamic 
controller was designed on the basis of the centralized model. The vector of 
driving moments P̂ ˆ

represents the sum of the driving moments 1̂P , 2P̂ .The 

torques 1̂P  are determined so to ensure precise tracking of the robot’s position and 

velocity in the space of joints coordinates. The driving torques 2P̂  are calculated 
with the aim of correcting the current ZMP position with respect to its nominal. 
The vector of driving torques P̂  represents the output control vector. 

3.1 Dynamic Controller of Trajectory Tracking 

The controller of tracking nominal trajectory of the locomotion mechanism 
has to ensure the realization of a desired motion of the humanoid robot and 
avoiding fixed obstacles on its way. In [28], it has been demonstrated how 
local PD or PID controllers of biped locomotion robots are being designed. 
The proposed dynamic control law ha the following form: 
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where hH ˆ,ˆ  and ĵ ˆ
are the corresponding estimated values of the inertia matrix, 

vector of gravitational, centrifugal and Coriolis forces and moments and Jacobian 
matrix from the model (1); The matrices PK  and VK

 
are the corresponding 

matrices of position and velocity gains of the controller. The gain matrices PK  

and VK
 
 can be chosen in the diagonal form by which the system is decoupled 

into nindependent subsystems. 

3.2 Compensator of Dynamic Reactions based on Fuzzy 
Reinforcement Learning Structure 

In the sense of mechanics, locomotion mechanism represents an inverted multi 
link pendulum. In the presence of elasticity in the system and external 
environment factors, the mechanism’s motion causes dynamic reactions at the 
robot supporting foot. For this reason it is essential to introduce dynamic reaction 
feedback at ZMP in the control synthesis. There are relationship between the 
deviations of ZMP positions (Δx

(zmp)
, Δy

(zmp)
) from its nominal position 0 ZMP  in 
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the motion directions x and y and the corresponding dynamic reactions M X  
(zmp) 

and M Y  
(zmp)

  

acting about the mutually orthogonal axes that pass through the point 

0 ZMP . M X

(zmp)
 and M Y  

(zmp) 
represent the moments that tend to overturn the 

robotic mechanism, i.e. to produce its rotation about the mentioned rotation axes. 
Nominal values of dynamic reactions, for the nominal robot trajectory, are 
determined off-line from the mechanism model (1) and the relation for calculation 
of ZMP; ΔM 

(zmp) 
is the vector of deviation of the actual dynamic reactions from 

their nominal values; P dr  is the vector of con trol torques at the joints 1’ and 2’, 
ensuring the state of dynamic balance; On the basis of the above the fuzzy 
reinforcement control algorithm is defined with respect to the dynamic reaction of 
the support at ZMP. 

3.2.1 Fuzzy Reinforcement Actor-Critic Learning Structure 

This subsection describes the learning architecture that was developed to enable 
biped walking. A powerful learning architecture should be able to take advantage 
of any available knowledge. The proposed reinforcement learning structure is 
based on Actor-Critic Methods [3], [6]. Actor-Critic methods are temporal 
difference (TD) methods, that have a separate memory structure to explicitly 
represent the control policy independent of the value function. In this case, control 
policy represents policy structure known as Actor with aim to select the best 
control actions. Exactly, the control policy in this case, represents the set of 
control algorithms with different control parameters. The input to control policy is 
state of the system, while the output is control action (signal). It searches the 
action space using a Stochastic Real Valued (SRV) unit at the output. The unit’s 
action uses a Gaussian random number generator. The estimated value function 
represents a Critic, because it criticizes the control actions made by the actor. 
Typically, the critic is a state-value function which takes the form of TD error 
necessary for learning. TD error depends also from reward signal, obtained from 
environment as result of control action. The TD Error is scalar signal that drives 
all learning in both actor and critic (Fig. 3). 

Practically, in proposed humanoid robot control design, it is synthesized the new 
modified version of GARIC reinforcement learning structure [3]. The 
reinforcement control algorithm is defined with respect to the dynamic reaction of 
the support at ZMP, not with respect to the state of the system. In this case 
external reinforcement signal (reward) R is defined according to values of ZMP 
error using fuzzy inference algorithm. Proposed learning structure is based on two 
networks: AEN(Action Evaluation Network) CRITIC and ASN(Action Selection 
Network) -ACTOR. AEN network maps position and velocity tracking errors and 
external reinforcement signal R in scalar value which represent the quality of 
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given control task. The output scalar value of AEN is important for calculation of 
internal reinforcement signal R̂ . AEN constantly estimate internal reinforcement 
based on tracking errors and value of reward. AEN is standard 2-layer 
feedforward neural network (perceptron) with one hidden layer. 

 
Figure 3 

The Actor-Critic Architecture 

The activation function in hidden layer is sigmoid, while in the output layer there 
are only one neuron with linear function. The input layer has a bias neuron. The 
output scalar value v is calculated based on product of set C of weighting factors 
and values of neurons in hidden later plus product of set A of weighting factors 
and input values and bias member. There are also one more set of weighting 
factors B between input layer and hidden layer. The number of neurons on hidden 
later is determined as 5. Exactly, the output v can be represented by the following 
equation: 

∑ ∑ ∑ Δ+Δ=
ii ji

zmp
iIj

zmp
iI MAfCMBv )( )()(

 (3) 

where f is sigmoid function. 

The most important function of AEN is evaluation of TD error, exactly internal 
reinforcement. The internal reinforcement is defined as TD(0) error defined by the 
following equation: 

R̂ (t + 1) = 0, begining state (4) 

R̂  (t + 1) = R(t)  − v(t), failure state (5) 

R̂  (t + 1) = R(t) + γv(t + 1) − v(t), otherwise (6) 

where γ is a discount coefficient between 0 and 1 (in this case γ is set to 0.9). 
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The most important part of algorithm represent the choice of reward function -
external reinforcement. It is possible to use scalar critic signal [11], but in this 
paper the reinforcement signal was considered as a fuzzy number R(t). We 
also assume that R(t) is the fuzzy signal available at time step t and caused by 
the input and action chosen at time step t-1 or even affected by earlier inputs 
and actions. For more effective learning, a error signal that gives more detail 
balancing information should be given, instead of a simple ‘go -no go’ scalar 
feedback signal. As an example in this paper, the following fuzzy rules can be 
used to evaluate the biped balancing according to following table. 

 
Table 1 

Fuzzy rules for external reinforcement 

The linguistic variables for ZMP deviations Δx
(zmp) 

and Δy
(zmp) 

and for external 
reinforcement R are defined using membership functions that are defined in Fig. 4. 

 
Figure 4 

The Membership functions for ZMP deviations and external reinforcement 

ASN (action selection network) maps the deviation of dynamic reactions ΔM 
(zmp) 

in recommended control torque. The structure of ASN is represented by The 
ANFIS -Sugenotype adaptive neural fuzzy inference systems. There are five 
layers: input layer. antecedent part with fuzzification, rule layer, consequent layer, 
output layer wit defuzzification. This system is based on fuzzy rule base generated 
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by expert kno0wledge with 25 rules. The partition of input variables (deviation of 
dynamic reactions) are defined by 5 linguistic variables: NEGATIVE BIG, 
NEGATIVE SMALL, ZERO, POSITIVE SMALL and POSITIVE BIG. The 
member functions is chosen as triangular forms. SAM (Stochastic action modifier) 
uses the recommended control torque from ASN and internal reinforcement signal 
to produce final commanded control torque Pdr. It is defined by Gaussian random 
function where recommended control torque is mean, while standard deviation is 
defined by following equation: 

R̂(σ (t + 1)) = 1 - 
− 

exp( )1(ˆ +tR ) (7) 

Once the system has learned an optimal policy, the standard deviation of the 
Gaussian converges toward zero, thus eliminating the randomness of the output. 
The learning process for AEN (tuning of three set of weighting factors A, B, C) is 
accomplished by step changes calculated by products of internal reinforcement, 
learning constant and The learning process for ASN (tuning of antedecent and 
consequent layers of ANFIS) is accomplished by gradient step changes (back 
propagation algorithms) defined by scalar output values of AEN, internal 
reinforcement signal, learning constants and current recommended control 
torques. 

The control torques Pdr obtained as output of actor structure cannot be generated 
at the joints 1’ and 2’ since they are unpowered (passive) joints. Hence, the control 
action has to be ‘displaced’ to the other (powered) joints of the mechanism chain. 
Since the vector of deviation of dynamic reactions ΔM

(zmp) 
has two components 

about the mutually orthogonal axes x and y, at least two different active joints 
have to be used to compensate for these dynamic reactions. Considering the model 
of locomotion mechanism, the compensation was carried out using the following 
mechanism joints: 1, 6 and 14 to compensate for the dynamic reactions about the x 
-axis, and 2, 4 and 13 to compensate for the moments about the y-axis. Thus, the 
joints of ankle, hip and waist were taken into consideration. Finally, the vector of 
compensation torques P

ˆ
2 (Fig. 2) was calculated on the basis of the vector of the 

moments Pdr whereby it has to be borne in mind how many ‘compensational 
joints’ have really been engaged. 

4 Simulation Studies 

The proposed hybrid intelligent control method, presented in previous section, 
were analyzed on the basis of numerical data obtained by simulation of the 
closed-loop model of the locomotion mechanism. Total mass of the 
mechanism was m = 70 [kg]. Its geometric and dynamic parameters were 
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taken from the literature [5]. Simulation examples concerned characteristic 
patterns of artificial gait in which the mechanism makes a half-step of the 
length l = 0.40 [m] in the time period T = 0.75 [s]. Nominal motion of the 
robot mechanism represents a walking on the ideally flat, horizontal surface 
during a half-step phase of the gait. Nominal trajectories at robot joints were 
synthesized for the gait on the horizontal ground surface. Nominal angles at 
the mechanism joints and the corresponding angular velocities and 
accelerations were determined by the semi-inverse method [28]. Initial 
conditions of the simulation examples (initial deviations of joints’ angles) 
were imposed by a definition of the following deviation vectors: 

Δq = [0 0 0 0.051 0 
− 

0.023 0.034 0 
− 

0.02 0 0 0 0 0 0 0 0 0]
 
[rad]. 

In the simulation example, the assigned initial deviations of particular angles Δq at 
the mechanism joints were assumed to be as large as it was previously 
emphasized. Constant, small inclinations of the ground surface in the sagittal 
plane γ1 =3◦ as well as in the frontal plane γ2 =2◦ were introduced as an additional 
perturbation, too. Thus the simulation experiment dealt with the real case of 
walking on a quasi-horizontal ground. The issue of interest was the robot’s 
behavior in the swing phase (Fig. 1), when the robot relies upon the ground by its 
rigid foot. The other one (free or swinging foot) was above the ground. Here, the 
control was realized in using control algorithm consisting of the basic dynamic 
trajectory tracking controller and reinforcement learning compensator of dynamic 
reactions of the ground at the ZMP. In Figs 5 and 6, the errors of ZMP position in 
x and y direction are shown. Thus, it can be concluded that errors of ZMP position 
are in required polygons, and in the case of absence of the reinforcement learning 
feedback with respect to the ground reactions at the ZMP it is not generally 
possible to ensure (guarantee) dynamic balance of a locomotion mechanism 
during its motion. This comes out from the fact that the pre-designed (nominal) 
trajectory was synthesized without taking into account possible deviations of the 
surface inclination on which biped walks from an ideally horizontal plane. 
Therefore, the ground surface inclination influences the system’s balance as an 
external stochastic perturbation. The corresponding deviations (errors) Δq of the 
actual angles at the robot joints from their reference values, in the case when the 
controller of tracking desired trajectory was applied, are presented in Fig. 7. The 
deviations Δq converge to zero values in the given time interval T =0.75 [s]. 
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Figure 5 

Error of ZMP in x-direction 

 
Figure 6 

Error of ZMP in y-direction 

It means that the controller employed ensures good tracking of the desired 
trajectory. well as a dynamic balance of the locomotion mechanism as it is 
illustrated in Fig. 7. 
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Figure 7 

Convergence of the errors of tracking nominal angles 

In Fig. 8 value of reinforcement signal through process of walking is presented. It 
is clear that task of walking within desired ZMP tracking error limits is achieved. 

 
Figure 8 

Reinforcement through process of walking 
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Conclusions 

In this study, an hybrid intelligent controller for biped locomotion was proposed. 
The proposed scheme was designed by using the centralized dynamic model. 
Control level consists of a dynamic controller for tracking robot’s nominal 
trajectory and a compensator of dynamic reactions of the ground around the ZMP 
based on new fuzzy actor-critic reinforcement learning architecture. The proposed 
reinforcement learning structure based on AEN (neural network) and ASN (neuro-
fuzzy network), represents the efficient learning tool for compensation of ZMP 
reactions. The algorithm is based on fuzzy evaluative feedback that are obtained 
from human intuitive balancing knowledge. On this way, biped then accumulate 
dynamic balancing knowledge through reinforcement learning, and thus 
constantly improve its gait during walking. The reinforcement learning with fuzzy 
evaluation feedback is much closer to the human biped walking evaluation than 
the original one with numerical feedback. 
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