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Abstract

Cancer is a complex and constantly evolving disease: cancer cells can
mutate and adapt to adverse conditions, making the tumor resistant to
chemotherapy.
This phenomenon can be represented by a mathematical model that
hypothesizes the ability of cells to randomly switch metabolic set-up, from a
more efficient but drug-sensitive one to a less efficient, but drug-resistant
one. The end result is the coexistence of two (or theoretically more) cell
populations, potentially competing for resources.
The dynamics of the coexistence of these populations can explain why
chemotherapy regimens, initially exhibiting marked effectiveness in reducing
tumor mass, may eventually succeed or fail, depending on the
drug-sensitivity and growth potential of the considered tumor cell populations.
A mathematical model incorporating such tumor cell population dynamics
helps interpret the results of experiments of doxorubicin treatment of
transplanted cancer in mice.
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Not all tumor cells are created equal...

Schematic representation of the cell proliferation
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... therefore cell populations are heterogeneous
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Experimental setting

A genetically engineered mouse model of breast cancer (DNA repair gene,
and p53, a regulator of cell cycle and genome stability, were knocked out in
breast epithelial cells) is used to test new chemotherapy regimens.

The resulting mammary tumors highly resemble the Brca1-linked,
triple-negative, hereditary breast cancer in humans: the molecular,
immunohistochemical, morphological, and genetic characteristics are almost
indistinguishable from their human counterpart.

Moreover, these tumors respond to chemotherapy in a similar fashion:
initial treatment with doxorubicin, docetaxel, or cisplatin significantly reduces
tumor size and induces remission; however, long-term therapy often fails
due to the emergence of drug resistance.
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Experimental Protocol

Mammary tumors were transplanted into 49 mice, divided in two groups:

G1: The mice received a first 4 mg/kg dose of PLD (pegylated liposomal
doxorubicin) when the tumor volume reached 200µL.

G2: The mice received a first 6 mg/kg dose of PLD when the tumor
volume reached 200µL.

After the first dosage, the therapy was decided according to two different
strategies:

for the G1 group, chemotherapy doses were optimized by using an
NMPC1 (nonlinear model predictive controller);

for the G2, a mixed-effect model was used for parameter identification,
the doses were calculated using a two-compartment model for drug
pharmacokinetics and a nonlinear pharmacodynamics and tumor
dynamics model2. Therapy was tailored based on the model parameters, with
the aim of obtaining a maximal effect with minimal dose.

1 Kovács L., et al, Experimental Closed-Loop Control of Breast Cancer in Mice,
https://www.hindawi.com/journals/complexity/2022/9348166/
2 Kovács L., et al, Positive Impulsive Control of Tumor Therapy—A Cyber-Medical Approach,

https://ieeexplore.ieee.org/document/10255720
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The Mathematical Model

The model is structured into two sub-models, including 7 equations, 5 differential and 2
algebraic, for a total of 18 parameters
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Sub-model for therapy administration

dU
dt

= −kYUU +
N∑

i=1

δ(t − ti)UiMi ,U(t0) = U0 (1)

dY
dt

= kYUU − kEY Y ,Y (t0) = Y0 (2)

U represents the kinetics of the administered drug

Ui is the i-th dose of drug, administered at time ti , with N is the total
number of doses

Mi is the mass of the mouse at time ti
Y represents the bioavailable drug that produces the effect on tumor
cells
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Sub-model for tumor growth:

dX1

dt
= k11X1e−λ12X2 − ρ21X1 − kZ1X1 − ηZ1Y YX1 , X1(t0) = X10 (3)

dX2

dt
= ρ21X1 + k22e−λ21X1 X2 − kZ2X2 − ηZ2Y YX2 , X2(t0) = X20 (4)

dZ
dt

= kZ1X1 + ηZ1Y Y X1 + kZ2X2 + ηZ2Y Y X2 − kEZ Z , Z (t0) = Z0 (5)

X = X1 + X2 + Z , X(t0) = X0 = X10 + X20 + Z0 (6)

V = ρVX X , V (t0) = ρVX X0 (7)

where:

X1 is the population of cells sensitive to the therapy

X2 is the population of cells resistant to the therapy

Z represents dead cells

X is the total amount of cells

V represents the volume of the tumor mass
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Parameter Estimation

The model was adapted on data obtained from the experimental procedure
described above.

Data over time (observed tumor volume for about 150 days) from six mice of
the G1 group were used to obtain mouse-specific parameter estimates. Each
mouse presented about 50 experimental time-points and the parameter
vector consisted of 6 free parameters.

The mice were chosen so that three of them (“Resistant”) eventually
developed uncontrollable, expanding tumor size, while the other three
(“Non-resistant”) showed reduction of tumor size until eventual
disappearance (within the time-frame of the experiment). The model was
identical for the two groups.

The algorithm used for optimizing the Ordinary Least Squares (OLS) loss
function was the Nelder-Mead method.
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Results

Fitting from the estimation procedure. Volume-time model predictions (continuous blue
lines) together with observed data (red circles) for the "Resistant" group (mice 1, 2 and
3) and for the "Non-resistant" group (mice 4, 5 and 6).
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Enlargement of the observed (red circles) and predicted (continuous blue lines)
volume-time graphs for mouse 1 ("Resistant") and mouse 6 ("Non-resistant").
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Parameter estimates

Table: Model parameter estimates of the "Resistant" group.

Parameters Mouse 1 Mouse 2 Mouse 3 Mean Standard Deviations
k11 0.475583 0.273432 0.191653 0.31356 0.14615614
ρ21 0.054943 0.029465 0.000106 0.02817 0.02744105
k22 0.096442 0.106717 0.137548 0.11357 0.02139278
λ21 0.044887 0.001539 0.007941 0.01812 0.02339861
ηZ1Y 22.92304 8.355523 10.54997 13.9428 7.85409636
ηZ2Y 6.91E-14 0.007749 0.046335 0.01803 0.02481878

Table: Model parameter estimates of the "Non-resistant" group.

Parameters Mouse 4 Mouse 5 Mouse 6 Mean Standard Deviations
k11 0.499719 0.252323 0.472718 0.408254 0.135712754
ρ21 0.056246 0.008369 0.02918 0.031265 0.024006644
k22 0.047043 0.051064 0.038818 0.045642 0.00624229
λ21 5.19E-08 3.69E-16 2.92E-12 1.73E-08 2.99599E-08
ηZ1Y 22.43253 9.369059 24.22907 18.67689 8.110711154
ηZ2Y 0.034729 0.113285 0.034136 0.060717 0.045526682
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Comments on the results

k11 and ρ21 values are approximately the same in "Resistant" and
"Non-resistant" mice: same X1 dynamics

similarly, ηZ1Y is large in both groups: same chemiotoxic effect on
sensitive cells

k22 is almost three times smaller and ηZ2Y is more than three times larger
in the "Non-resistant" WRT the "Resistant" group: in "Non-resistant"
mice X2 cells replicate slower and are more sensitive to chemiotherapy!

a substantial λ21 in the "Resistant" group points to visible suppression of
the "resistant" cells by the "sensitive" cells.

λ21 approximates zero in the "Non-resistant" mice: we are unable to
discriminate a two-cell-population from a single-cell-population model.
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Future developments

Extend the parameter estimation procedure to the whole set of the
experimental units;

Parameter estimation with a Non Linear Mixed-Effects approach;
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Thank you!

andrea.degaetano@cnr.it
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