

Accelerating Evolutionary Algorithms to Solve Highdimensional Expensive Problems via Autoencoders

MengChu Zhou, Dist. Professor Fellow of IEEE, IFAC, AAAS, CAA & NAI New Jersey Institute of Technology zhou@njit.edu

Hom

Venue & Accommodation

Useful Information **Partnership & Exhibition**

Contact

Committees Important Dates Submissions ' Registration Program *

Kuching, Sarawak, Malaysia

October 7-10, 2024

www.ieeesmc2024.org

General Chairs: S. Mohamed & A. Nürnberger **Program Chair: MengChu Zhou**

IEEE SMC 2024

International Conference on Systems, Man, and Cybernetics

Borneo Convention Centre Kuching, Sarawak, Malaysia 7 - 10 October 2024

Proposals for Special Sessions January 21, 2024

Workshop and Tutorial Proposals April 8, 2024

Regular, Special Session, Industrial, BMI Workshop Papers April 8, 2024

Special Issue on Internet of Things, Internet of Behaviors, and Industry 5.0

Call for Papers

Main Topics

Emerging methods, paradigms and architecture in IoT and IoB for Industry 5.0
IoT/IoB-enabled efficient human-robot interaction and collaboration
Intelligent perception methods, architectures and platforms in Industry 5.0
Big data analytics and machine learning techniques for intelligent manufacturing

International Journal of Production Research

Internet of Things, Internet of Behaviors and Industry 5.0

https://www.callforpapers.co.uk/internet-of-behaviors

Guest Editors

- Mengchu Zhou, New Jersey Institute of Technology, USA. Email: <u>zhou@njit.edu</u>
- Yixiong Feng, Guizhou University, China
- Qinglin Zhao, Macau University of Science and Technology, China
- Maria Pia Fanti, Polytechnic of Bari, Italy

Important Dates

- Submission: June 1, 2024
- Revision: Aug 1, 2024
- Final: Oct. 1, 2024
- Publication: Jan 2025

- Human factors and ergonomics for Industry 5.0
 Technology and application of human digital twin modelling for Industry 5.0
- Collaborative design and optimization in Industry \$
- IoT/IoB-enabled flexible Job shop scheduling
- Cloud, fog, and edge computing for Industry 5.0
- Multi-objective optimization methods for Industry 5
- Supply chain for Industry 5.0
- •IoT/IoB-driven collective decision-making and intelligent control
- IoT/IoB-driven manufacturing, assembly, disassen and remanufacturing

- Background
- Proposed Algorithms
- Experimental Results
- Future Research
- Conclusions

mm-wave integrated circuit design problem

SPACEX related design/ optimization problem

Mathematical Optimization V.S. Evolutionary Optimization

N

New Jersey's Science & Technology University

Background

Research Directions of Evolutionary Optimization

9

Computationally expensive evaluations

Heavy computing resources

Intensive physical resources

Surrogate-assisted Evolutionary Algorithms

Surrogate-assisted Evolutionary Algorithms

Algorithm	Specific strategy	EA + Surrogate	Max_D
GPEME	DR + Local surrogate	DE + GP	50D
SA-COSO	Global + Local surrogate	PSO, SL-PSO + RBF, FES	200D
SHPSO	Multi-swarm	PSO + RBF	100D
ESAO	Global + Local surrogate	DE + RBF	200D
GSGA	2 Global + 1 Local surrogate	GA + GP, RBF	100D
SAMSO	Multi-swarm, dynamic swarm size adjustment	TLBO+SPSO, RBF + GP	200D

GPEME: Gaussian process surrogate model assisted evolutionary algorithm **SA-COSO**: Surrogate-assisted cooperative swarm optimization algorithm **SHPSO**: Surrogate-assisted cooperative swarm optimization algorithm **EASO**: Evolutionary sampling assisted optimization **GSGA**: Generalized surrogate-assisted genetic algorithm **SAMSO**: Surrogate-assisted multiswarm optimization

Disadvantages of Surrogate-assisted Optimization

- Low surrogate model accuracy
- > High training time complexity

Motivations

Make full use of expensive fitness evaluation

Generate offspring in low-dimensional space

Autoencoder (AE)

- Unsupervised artificial neural networks
- Learn efficient representations of input data
- Reconstruct outputs (~inputs) from that representations (a restorable process)

Autoencoders

Typical Applications

Advantages

 Suitable to deal with large-scale data

 Restoration ability without extra effort

Role of Autoencoders

Role of Autoencoders

Learning promising evolution directionsCompressing search space

Autoencoder-embedded Optimization(AEO)

Autoencoder-embedded Optimization

Stage 1: Autoencoder training

Autoencoder training

- Compressing search space
- Learning promising evolution directions
- Possessing restoration ability

Stage 2: Bi-population co-operation evolution

Bi-population cooperative evolution
 Offspring generated in different dimensional spaces
 Dynamic population information exchange

Autoencoder-embedded Evolutionary Optimization

 Finding high-quality solutions in a short time

- ✓ Autoencoder for dimension reduction
- Swarm algorithm as a baseline optimizer, e.g., Teaching-learning-based optimizer (TLBO) and Gray Wolf Optimizer (GWO).
- ✓ **Bi-population coevolution**

Two-phase Teaching-learning-based Optimizer (TTLBO)

- ✓ The process of teaching and learning
- ✓ Less parameters and fast convergence

Teaching Phase (TLBO-T): Global exploration

X

Learning Phase (TLBO-L): Local exploitation

Χ

X

- \mathbf{x}^* teacher with the best fitness value
- $\bar{\mathbf{x}}$ mean of fitness values
- r_i random number in range [0, 1]
- T_F teaching factor 1 or 2

Autoencoder-embedded TTLBO (ATLBO)

Exploration and exploitation balance

TLBO_T in low-dimensional space

TLBO_L in high-dimensional space

✓ Dynamic matching bi-population

Multi-swarm Gray-wolf-optimizer based on Genetic Learning (MGG)

Classic GWO: the predatory behavior simulation of gray wolf packs

- ✓ Social hierarchy: $\alpha, \beta, \delta, \omega$ from the fittest to worst
- $\checkmark \text{ Hunting: } \vec{X}' = \frac{\vec{X}_1 + \vec{X}_2 + \vec{X}_3}{3}$ $\vec{D}_{\alpha} = |\vec{C}_1 \cdot \vec{X}_{\alpha} \vec{X}|, \quad \vec{D}_{\beta} = |\vec{C}_2 \cdot \vec{X}_{\beta} \vec{X}|, \quad \vec{D}_{\delta} = |\vec{C}_3 \cdot \vec{X}_{\delta} \vec{X}|,$ $\vec{X}_1 = \vec{X}_{\alpha} \vec{A}_1 \cdot \vec{D}_{\alpha}, \quad \vec{X}_2 = \vec{X}_{\beta} \vec{A}_2 \cdot \vec{D}_{\beta}, \quad \vec{X}_3 = \vec{X}_{\delta} \vec{A}_3 \cdot \vec{D}_{\delta}$ $\vec{A} = 2\vec{a} \cdot \vec{r}_1 \vec{a}, \quad \vec{C} = 2\vec{r}_2$ $r_1, r_2 \text{random number in range [0, 1]}$

MGG: enhance local search ability and guarantee population diversity

- ✓ Divide population into many equal sub-populations
- ✓ Genetic operators

Autoencoder-embedded MGG (AMGG)

Self-adaptive TLBO with IRBF and a sparse Autoencoder (STORA)

NJIT New Jersey's Science & Technology University

- ✓ Self-adaptive TLBO (STLBO) as a baseline optimizer
- ✓ Improved Radial basis function (IRBF) as surrogates to predict fitness values
- ✓ Bi-population dynamic allocation strategy

Autoencoder-embedded Iterated Local Search (AILS)

✓ Long Short-Term Memory-based Autoencoder (LSTM-AE)

AEO-based Method for Combinatorial Optimization LSTM-AE-embedded Evolutionary Algorithm

LSTM= Long Short-Term Memory network

Applications to Function Optimization

Experimental Design

Functions to be optimized

Fun	Name	Design space	f^* †	Property
F1	Ellipsoid	$[-5, 5]^D$	0	Unimodal
F2	Rosenbrock	$[-2 \ 2^{D}]^{D}$	0	Multimodal with
1 2	Rosenbrock	[-2, 2]		narrow valley
F3	Ackley	$[-32, 32]^D$	0	Multimodal
F4	Griewank	$[-600, 600]^D$	0	Multimodal
F5	Rastrigin	$[-5,5]^D$	0	Multimodal
F6	Shifted rotated F5	$[-5,5]^D$	-330	Multimodal & Complex
F7	Hybrid function [‡]	$[-5,5]^D$	10	Multimodal & Complex

[†] f^* means global optimum.

[‡] Rotated hybrid composition function with a narrow basin for the global optimum.

Problem dimensions: 50-200 **Optimization algorithm: teaching-learning based** optimization Stopping criterion: 1000 fitness evaluations

Convergence curves of 200D Ellipsoid and 200D Rastrigin

Experimental results on benchmark functions

Convergence curves of AEO and other algorithms to deal with 100D problems

Experimental results on benchmark functions

Comparative results with compared algorithms on 200D functions

Fun	SA_COSO	EASO	SAMSO	AEO
F1	1.63e+04(2.98e+03) +	1.76e+04(1.17e+03) +	1.52e+03(2.12e+02) +	7.01e-02(6.46e-02)
F2	1.64e+04(4.09e+03) +	4.31e+03(2.84e+02) +	1.15e+03(1.16e+02) +	1.98e+02(7.84e-02)
F3	1.78e+01(2.23e-02) +	1.46e+01(2.19e-01) +	1.20e+01(4.00e-01) +	1.42e-01(4.28e-02)
F4	5.77e+02(1.01e+02) +	5.72e+02(3.60e+01) +	9.03e+00(1.33e+00) +	1.79e-01(2.04e-01)
F6	3.92e+03(2.72e+02) -	5.38e+03(1.56e+02) +	4.96e+03(1.38e+02) +	4.80e+03(2.19e+02)
F7	1.34e+03(2.46e+01) +	1.45e+03(2.04e+01) +	1.34e+03(2.43e+01) +	9.10e+02(1.00e-02)
$+/\approx/-$	5/0/1	6/0/0	6/0/0	N/A

Meiji Cui, Li Li*, Mengchu Zhou*, Jiankai Li, Abdullah Abusorrah. A Bi-population Cooperative Optimization Algorithm Assisted by an Autoencoder for Medium-scale Expensive Problems. *IEEE/CAA Journal of Automatica Sinica*, 2022. DOI: 10.1109/JAS.2022.105425

Will AEO further converge given more FEs?

Example of surrogate model

- Incorporate surrogate models into AEO

Surrogate selection - Gaussian Processes (GPs)

- Random forest (RF)
- Radial basis function (RBF)

Surrogate construction Dimension reduction technique - Surrogate ensembles

Surrogate management - Performance-based indicator

- Uncertainty-based indicator
 Both of them

0---0

Model construction: surrogate activation condition (balance model accuracy and construction time)

Model management: re-evaluate individuals whose predicted values better than historical ones (guarantee convergence speed)

Experimental results on benchmark functions

50D

100D

200D

Radar figures of different algorithms

Experimental results on benchmark functions

Convergence curves of SAEO and other algorithms to deal with 100D problems

Experimental results on benchmark functions

Comparative results of different algorithms on 500D problems

Fun	SAMSO	SAEO
F1	3.28e+04(3.66e+03)	6.60e-09(3.70e-09)
F2	2.72e+03(3.39e+02)	4.98e+02(1.90e-02)
F3	1.30e+01(5.71e+00)	3.08e-08(1.02e-08)
F4	4.43e+02(8.40e+01)	1.98e-09(1.21e-09)
F5	4.55e+03(1.13e+02)	1.69e-07(2.95e-07)
F6	1.35e+04(1.11e+02)	1.28e+04(1.29e+04)
F7	1.17e+03(2.17e+01)	9.10e+02(1.01e+01)

Meiji Cui, Li Li*, Mengchu Zhou*, Abdullah Abusorrah. Surrogate-assisted Autoencoderembedded Evolutionary Optimization Algorithm to Solve High-dimensional Expensive Problems. *IEEE Transactions on Evolutionary Computation*, 2021. DOI: 10.1109/TEVC.2021.3113923

Comparative convergence curves of AEO and SAEO

General framework
 Suitable to deal with large-scale expensive problems

Applications

- Scheduling Mobile Edge Computing Systems
- Task scheduling for Human-cyberphysical Systems
- Job-shop and flow-shop scheduling in discrete manufacturing

Mobile Edge Computing Systems (MEC)

Energy Consumption Minimization (ECM)

SMDs: smart mobile devices FAPs: femto access points

- The limited energy, computing, and storage resources of smart mobile devices (SMDs).
- Providing more scalable performance, reducing network load and hastening data transmission.
- High-dimensional and resourceintensive computing data
- ✓ How to effectively reduce energy consumption.

Mobile Edge Computing Systems (MEC)

Energy Consumption Minimization (ECM)

- High-dimensional Problem: 300-Dimensionality in our work
- Single-objective: Minimize total energy consumed by all SMDs and edge servers while guaranteeing constrains for prolong battery life

$$\min_{f_l, P_t, \lambda} E(f_l, P_t, \lambda)$$
s.t. C1: $L(f_l, P_t, \lambda) \leq L_{\max}$
C2: $0 \leq \lambda \leq 1$
C3: $0 \leq P_t \leq P_{t_{\max}}$
C4: $0 \leq f_l \leq f_{l_{\max}}$

- f_l computational speed of SMD
- P_t transmit power of SMD
- $\lambda\,$ ratio of locally executed amount of bits to the total input data bits
- L the latency to execute an application

ECM Problem in Mobile Edge Computing Systems

ATLBO Performance 🗸

✓ ATLBO performs three to six times better than TLBO and AMGG.
 ✓ Main criterion: execution time

SMD: smart mobile device

Distance: *distance from SMD to its serving femto access points (FAPs)*

STORA Performance

Average energy consumption v.s. SMD count

SMD: *smart mobile device* **Distance:** *distance from SMD to its serving femto access points (FAPs)*

45

STORA Performance

Energy consumption in each iteration

Execute *n* deadline-constrained tasks on *m* heterogeneous processors in, e.g., semiconductor manufacturing and smart logistics.

Tasks are represented by a group of directed acyclic graphs.

> High-dimensional Problem

Single-objective: Minimize energy consumption during task scheduling

> Limited computational resources

ETSD Problem in Human-cyber-physical Systems

Average energy consumption of ILS and AILS

LSTM-AE-embedded Evolutionary Algorithm for Scheduling Hewlett-Packard's Post-printing Process

- ➢ 91 jobs and 10 machines
- The scheduling problem has about 2.376×10⁴² feasible solutions.
- Tianhe-2 can perform 5.49×10¹⁶ times fitness evolution per second. It will take 1.373×10¹⁶ years to do so.
- Note that lifespan of our universe = 1.5×10^{10} years.

Numerical simulation results

	Scenario (n, m)	IBM ILOG CPLEX 12.1 (1 hour)	LGWO without autoencoder	CPU time (second)	LSTM-AE- embedded EA	CPU time (second)
Small-scale Problem	DAFJS01 (26,5)	257	264	80	261	65
	DAFJS02 (25,5)	289	295	81	292	65
	DAFJS05 (39,5)	576	401	112	405	98
Medium- scale Problem	DAFJS07 (85,10)	565	524	275	505	231
	DAFJS11 (113,10)	708	697	272	680	221
	DAFJS12 (117,10)	720	730	312	706	251
Large-scale Problem	YFJS17 (289,26)	1622	2120	360	1290	360
	YFJS18 (289,26)	2082	2341	360	1499	360
	YFJS19 (289,26)	1525	2231	360	1333	360
	YFJS20 (289,26)	2020	3082	360	1279	360

Numerical simulation results

Autoencoder-embedded EA improves average fitness values by 10.8-16.1% over Genetic Algorithm, Cuckoo Search with reinforcement learning and surrogate modeling, and Knowledge-based Cuckoo Search.

Future Research

Will autoencoder architecture affect? activation function hidden layer

Relu	$f(x) = \max(0, x)$
Softmax	$p(y x) = \frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)} = softmax(f)_y$
Elu	$f(x) = \begin{cases} -x & x > 0\\ \alpha(\exp(x) - 1, & x \le 0 \end{cases}$
Selu	$f(x) = \lambda \begin{cases} x & x > 0\ \alpha(\exp(x) - 1x \le softplus0 \end{cases}$
Tanh	$f(x) = \tanh\left(\frac{x}{2}\right)$
sigmoid	$f(x) = \frac{1}{1 + \exp(-\alpha x)}$

Hidden layers

Activation functions

AEO: suitable for large-scale expensive problems

SAEO: enhance the performance of AEO given limited computational resources

> AEO and SAEO: general framework

Welcome your questions!

zhou@njit.edu

Functions

ROSENBROCK FUNCTION

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2
ight]$$

ACKLEY FUNCTION

$$f(\mathbf{x}) = -a \exp\left(-b \sqrt{rac{1}{d}\sum_{i=1}^d x_i^2}
ight) - \exp\left(rac{1}{d}\sum_{i=1}^d \cos(cx_i)
ight) + a + \exp(1)$$

Functions

GRIEWANK FUNCTION

RASTRIGIN FUNCTION

 $f(\mathbf{x}) = 10d + \sum_{i=1}^{d} \left[x_i^2 - 10\cos(2\pi x_i) \right]$

N

Functions

F6 Shifted Rotated Rastrigin

 $F_{10}(\mathbf{x}) = \sum_{i=1}^{D} (z_i^2 - 10\cos(2\pi z_i) + 10) + f _bias_{10}, \ \mathbf{z} = (\mathbf{x} - \mathbf{o})^* \mathbf{M}, \ \mathbf{x} = [x_1, x_2, ..., x_D]$

Functions

F7 Rotated Hybrid Composition Function with narrow basin global optimum

