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https://www.callforpapers.co.uk/internet-of-behaviors

•Emerging methods, paradigms and 
architecture in IoT and IoB for Industry 5.0
•IoT/IoB-enabled efficient human-robot 
interaction and collaboration
•Intelligent perception methods, 
architectures and platforms in Industry 5.0
•Big data analytics and machine learning 
techniques for intelligent manufacturing

Main Topics

Special Issue on Internet of Things, 
Internet of Behaviors, and Industry 5.0 

•Human factors and ergonomics for Industry 5.0
•Technology and application of human digital twin 
modelling for Industry 5.0
•Collaborative design and optimization in Industry 5
•IoT/IoB-enabled flexible Job shop scheduling
•Cloud, fog, and edge computing for Industry 5.0
•Multi-objective optimization methods for Industry 5
•Supply chain for Industry 5.0
•IoT/IoB-driven collective decision-making and 
intelligent control
•IoT/IoB-driven manufacturing, assembly, disassem  
and remanufacturing



 Background

 Proposed Algorithms

 Experimental Results

 Future Research

 Conclusions

Layout



Background

6

Test and optimize car design for safety


Packed by Bilibili XCoder v2.0.2





Background

mm-wave integrated 
circuit design 

problem

SPACEX related 
design/ optimization 

problem
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Background

- Gradient-based method
- Fast convergence speed

- Problem-independent method
- GPU-based parallel computing
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Mathematical Optimization V.S. Evolutionary Optimization

Mathematical optimization Evolutionary optimization
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Research Directions of Evolutionary Optimization

Large-
scale

Conver
gent
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Large-scale 
decision 
variables

 Expanding search space
 Complex relations among 

variables
 Changing problem 

characteristics

Computationally 
expensive 

evaluations

 Heavy computing resources

 Intensive physical resources
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Surrogate-assisted Evolutionary Algorithms

Original 
data

Pre-
processing

Data Function 
evaluation Offspring

Selection

Population

Variation

Expensive function
          Surrogate function
       o           Sample point  
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- Model selection: problem independent
- Model construction: curse of dimensionality
- Model management: non-determinacy



Background
Surrogate-assisted Evolutionary Algorithms

GPEME: Gaussian process surrogate model assisted evolutionary algorithm
SA-COSO: Surrogate-assisted cooperative swarm optimization algorithm
SHPSO: Surrogate-assisted cooperative swarm optimization algorithm
EASO: Evolutionary sampling assisted optimization
GSGA: Generalized surrogate-assisted genetic algorithm
SAMSO: Surrogate-assisted multiswarm optimization

Algorithm Specific strategy EA + Surrogate Max_D
GPEME DR + Local surrogate DE + GP 50D
SA-COSO Global + Local surrogate PSO, SL-PSO + RBF, FES 200D
SHPSO Multi-swarm PSO + RBF 100D
ESAO Global + Local surrogate DE + RBF 200D
GSGA 2 Global + 1 Local 

surrogate
GA + GP, RBF 100D

SAMSO Multi-swarm, dynamic
swarm size adjustment

TLBO+SPSO, RBF + GP 200D
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Presenter
Presentation Notes
DR means dimension reduction (Sammon mapping),  SL-PSO means social learning based PSO  SPSO means standard PSO . Sammon mapping or Sammon projection is an algorithm that maps a high-dimensional space to a space of lower dimensionality by trying to preserve the structure of inter-point distances in high-dimensional space in the lower-dimension projection



Background

Disadvantages of Surrogate-assisted Optimization

 Low surrogate model accuracy

High training time complexity

Motivations

Make full use of expensive fitness evaluation

Generate offspring in low-dimensional space
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Autoencoder (AE)

Output
(≈Input)

DecoderEncoder

Input

𝑥𝑥2

𝑥𝑥1

𝑥𝑥3

𝑥𝑥4

𝑥𝑥5

𝑥𝑥1′

𝑥𝑥2′

𝑥𝑥3′

𝑥𝑥4′

𝑥𝑥5′Code
‘bottlene

ck’

Unsupervised artificial neural networks

 Learn efficient representations of input 
data

Reconstruct outputs (≈inputs) from that 
representations (a restorable process)
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Autoencoders

 Typical 
Applications
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Original 
Complex Signals Coded 

features

HospitalReconstructed 
Signals

Decoder

Encoder

Electrocardiograms 
(ECG) compression

Advantages

- Suitable to deal 
with large-scale 
data

- Restoration ability 
without extra effort



Role of Autoencoders
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Encode

2D 1D



Role of Autoencoders
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Decode

1D 2D
- Learning promising evolution directions
- Compressing search space



Autoencoder-embedded Optimization(AEO)

18

AEO Framework

Stage 1：
Autoencoder 
training

Stage 2：
Bi-population 
cooperative 
evolution

Y

N

NEnoug
h data？

Y

Offspring 
generation

Autoencoder-assisted evolution

Individual 
selection

Fitness 
evaluation

Population 
initialization

Autoencoder training

Sub-
population 
encoding

Sub-
offspring 

generation

Sub-
offspring 
decoding

Sub-
offspring 

generation

Data 
archive

Reduced space

Dimension-changing space

Original space

Offspring evaluation and individual selection

Split current population into two sub-population 
according to dynamic size adjustment strategy

Stop？

Output

Regular evolution



Autoencoder-embedded Optimization

Stage 1: Autoencoder training
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NEnough 
data？

Y

Offspring 
generation

Individual 
selection

Fitness 
evaluation

Population 
initialization

Autoencoder training

Data 
archive

 Autoencoder training
    - Compressing search space
    - Learning promising evolution directions
    - Possessing restoration ability



Autoencoder-embedded Optimization
Stage 2: Bi-population co-operation evolution
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Y

N

Autoencoder-assisted evolution

Sub-population 
encoding

Sub-offspring 
generation

Sub-offspring 
decoding

Sub-offspring 
generation

Reduced space

Dimension-changing space

Offspring evaluation and individual selection

Split current population into two sub-population 
according to dynamic size adjustment strategy

Stop？

Output

Regular evolution

 Bi-population cooperative evolution
    - Offspring generated in different dimensional spaces
 Dynamic population information exchange

Original space
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Autoencoder-embedded 
Evolutionary Optimization

Finding high-quality solutions in a short 
time
Autoencoder for dimension reduction
Swarm algorithm as a baseline    

optimizer, e.g., Teaching-learning-based 
optimizer (TLBO) and Gray Wolf 
Optimizer (GWO).
Bi-population coevolution
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Two-phase Teaching-learning-based Optimizer (TTLBO)

 The process of teaching and learning
 Less parameters and fast convergence 

Teaching Phase (TLBO-T): Global exploration
 

Learning Phase (TLBO-L): Local exploitation 

𝐱𝐱∗ − teacher with the best fitness value
�𝐱𝐱  − mean of fitness values
𝑟𝑟𝑖𝑖  − random number in range [0, 1]
𝑇𝑇𝐹𝐹 − teaching factor 1 or 2

𝐱𝐱

𝐱𝐱

𝐱𝐱
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Autoencoder-embedded TTLBO (ATLBO)

 Exploration and exploitation balance

       TLBO_T in low-dimensional space

       TLBO_L in high-dimensional space 

 Dynamic matching bi-population
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Multi-swarm Gray-wolf-optimizer based on Genetic Learning (MGG)

Classic GWO: the predatory behavior simulation of gray wolf packs

 Hunting:

𝑟𝑟1, 𝑟𝑟2 − random number in range [0, 1]

𝑿𝑿′ =
𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3

3

 Social hierarchy: 𝛼𝛼,𝛽𝛽, 𝛿𝛿,𝜔𝜔 from the fittest to worst

𝐴𝐴 = 2�⃗�𝑎 � 𝑟𝑟1 − �⃗�𝑎, 𝐶𝐶 = 2𝑟𝑟2

𝐷𝐷𝛼𝛼 = 𝐶𝐶1 � 𝑋𝑋𝛼𝛼 − 𝑋𝑋 , 𝐷𝐷𝛽𝛽 = 𝐶𝐶2 � 𝑋𝑋𝛽𝛽 − 𝑋𝑋 , 𝐷𝐷𝛿𝛿 = 𝐶𝐶3 � 𝑋𝑋𝛿𝛿 − 𝑋𝑋 ,

𝑋𝑋1 = 𝑋𝑋𝛼𝛼 − 𝐴𝐴1 � 𝐷𝐷𝛼𝛼, 𝑋𝑋2 = 𝑋𝑋𝛽𝛽 − 𝐴𝐴2 � 𝐷𝐷𝛽𝛽 , 𝑋𝑋3 = 𝑋𝑋𝛿𝛿 − 𝐴𝐴3 � 𝐷𝐷𝛿𝛿

MGG: enhance local search ability and guarantee population diversity
Divide population into many equal sub-populations 
Genetic operators
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Autoencoder-embedded MGG (AMGG)  

 Dynamic-subpopulation Number

      Beginning: decreasing subpopulation count

      End: subpopulation count reduced to one

 Subpopulation Stochastic Recombination

 GG: Genetic-learning GWO

     MGG:  Multi-swarm GG
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Self-adaptive TLBO with IRBF and a sparse Autoencoder (STORA)

 Self-adaptive TLBO (STLBO) as a baseline optimizer
 Improved Radial basis function (IRBF) as surrogates to predict fitness values
 Bi-population dynamic allocation strategy 
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Autoencoder-embedded Iterated Local Search (AILS)

 Long Short-Term Memory-based Autoencoder (LSTM-AE)



28

AEO-based Method for Combinatorial Optimization

LSTM-AE-embedded Evolutionary Algorithm

LSTM= Long Short-Term Memory network



Applications to Function Optimization
Experimental Design

 Functions to be optimized

Problem dimensions: 50-200
Optimization algorithm: teaching-learning based 

optimization
Stopping criterion: 1000 fitness evaluations

29



Effects of Autoencoder

Experimental results

30

Convergence curves of 200D Ellipsoid and 200D Rastrigin

Autoencoder 
activation



Experimental results on benchmark functions

Experimental results

31

Convergence curves of AEO and other algorithms to deal with 100D problems



Experimental results on benchmark functions

Experimental results
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Meiji Cui, Li Li*, Mengchu Zhou*, Jiankai Li, Abdullah Abusorrah. A Bi-population Cooperative 
Optimization Algorithm Assisted by an Autoencoder for Medium-scale Expensive Problems. 
IEEE/CAA Journal of Automatica Sinica, 2022. DOI: 10.1109/JAS.2022.105425



Will AEO further converge given more FEs?

- Incorporate surrogate models into AEO

Surrogate-assisted AEO (SAEO)

33

Example of surrogate model



Surrogate selection
    - Gaussian Processes (GPs)
    - Random forest (RF)
    - Radial basis function (RBF)

Surrogate construction
    - Dimension reduction technique    
    - Surrogate ensembles

Surrogate management
    - Performance-based indicator
    - Uncertainty-based indicator
    - Both of them

Surrogate-assisted AEO (SAEO)

34



Surrogate-assisted AEO (SAEO)
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Surrogate-assisted AEO (SAEO)
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No

Yes

Yes No

Fitness
evaluation

H
igh-dim

ensional 
space

Sub-offspring 
generation

Surrogate 
prescreening

Individual selection 
for re-evaluation

Sub-population II

Surrogate 
activation?

Sub-
offspring 

generation

New data 
added?

Surrogate 
training

 Model construction: surrogate activation condition 
(balance model accuracy and construction time)

 Model management: re-evaluate individuals whose 
predicted values better than historical ones (guarantee 
convergence speed)



Experimental results on benchmark functions

Experimental results
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Radar figures of different algorithms

50D 100D 200D



Experimental results on benchmark functions

Experimental results

38

Convergence curves of SAEO and other algorithms to deal with 100D problems



Experimental results on benchmark functions

Experimental results
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Comparative results of different algorithms on 500D problems

Meiji Cui, Li Li*, Mengchu Zhou*, Abdullah Abusorrah. Surrogate-assisted Autoencoder-
embedded Evolutionary Optimization Algorithm to Solve High-dimensional Expensive 
Problems. IEEE Transactions on Evolutionary Computation, 2021. DOI: 
10.1109/TEVC.2021.3113923



AEO V.S. SAEO

Experimental results

40

Comparative convergence curves of AEO and SAEO

 General framework
 Suitable to deal with large-scale expensive 

problems



Applications

• Scheduling Mobile Edge Computing 
Systems

• Task scheduling for Human-cyber-
physical Systems

• Job-shop and flow-shop scheduling in 
discrete manufacturing

41



Mobile Edge Computing Systems (MEC)

42

Energy Consumption Minimization (ECM) 
 The limited energy, computing, and 

storage resources of smart mobile 
devices (SMDs).

 Providing more scalable performance, 
reducing network load and hastening 
data transmission.

 High-dimensional and resource-
intensive computing data

 How to effectively reduce energy 
consumption.SMDs: smart mobile devices

FAPs: femto access points 



Mobile Edge Computing Systems (MEC)

43

Energy Consumption Minimization (ECM) 
 High-dimensional Problem: 300-Dimensionality in our work

 Single-objective: Minimize total energy consumed by all SMDs and edge servers 

while guaranteeing constrains for prolong battery life 

min
𝑓𝑓𝑙𝑙, 𝑃𝑃𝑡𝑡, 𝜆𝜆 

𝐸𝐸(𝑓𝑓𝑙𝑙 ,  𝑃𝑃𝑡𝑡 , 𝜆𝜆)

𝒔𝒔. 𝒕𝒕.  𝐂𝐂𝟏𝟏:  𝐿𝐿 𝑓𝑓𝑙𝑙 ,  𝑃𝑃𝑡𝑡 , 𝜆𝜆 ≤ 𝐿𝐿max
𝐂𝐂𝟐𝟐: 0 ≤ 𝜆𝜆 ≤ 1
𝐂𝐂𝐂𝐂:  0 ≤ 𝑃𝑃𝑡𝑡≤ 𝑃𝑃𝑡𝑡max

𝐂𝐂𝐂𝐂:  0 ≤ 𝑓𝑓𝑙𝑙≤ 𝑓𝑓𝑙𝑙max

𝑓𝑓𝑙𝑙 — computational speed of SMD

𝑃𝑃𝑡𝑡 — transmit power of SMD

𝜆𝜆 — ratio of locally executed amount of bits to the total input data bits

𝐿𝐿 — the latency to execute an application



44SMD: smart mobile device
Distance: distance from SMD to its serving femto access points (FAPs)

ECM Problem in Mobile Edge Computing Systems

ATLBO Performance  ATLBO performs three to six times better than TLBO and AMGG.
 Main criterion: execution time

Average energy consumption v.s. distance Average energy consumption v.s. SMD count
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STORA Performance

ECM Problem in Mobile Edge Computing Systems

Average energy consumption v.s. distance Average energy consumption v.s. SMD count

SMD: smart mobile device
Distance: distance from SMD to its serving femto access points (FAPs)
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STORA Performance

ECM Problem in Mobile Edge Computing Systems

Energy consumption in each iteration



Task scheduling in human-cyber-physical systems
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High-dimensional Problem

 Single-objective: Minimize energy consumption during 

task scheduling

 Limited computational resources

Execute n deadline-constrained tasks on m heterogeneous 
processors in, e.g., semiconductor manufacturing and smart 
logistics.

Tasks are represented by a group of directed acyclic graphs.
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ETSD Problem in Human-cyber-physical Systems

Average energy consumption of ILS and AILS

 AILS: Autoencoder-embedded ILS
 ILS: Iterated Local Search



91 jobs and 10 machines 

The scheduling problem has about 2.376×1042 feasible 

solutions.

 Tianhe-2 can perform 5.49×1016 times fitness evolution 

per second. It will take 1.373×1016 years to do so.

 Note that lifespan of our universe = 1.5×1010 years.

LSTM-AE-embedded Evolutionary Algorithm for 
Scheduling Hewlett-Packard’s Post-printing Process 



Scenario
(n, m)

IBM ILOG CPLEX
12.1 (1 hour)

LGWO without 
autoencoder

CPU time
(second)

LSTM-AE-
embedded EA

CPU time
(second)

Small-scale 
Problem

DAFJS01 (26,5) 257 264 80 261 65

DAFJS02 (25,5) 289 295 81 292 65

DAFJS05 (39,5) 576 401 112 405 98

Medium-
scale 

Problem

DAFJS07 (85,10) 565 524 275 505 231

DAFJS11 (113,10) 708 697 272 680 221

DAFJS12 (117,10) 720 730 312 706 251

Large-scale 
Problem

YFJS17 (289,26) 1622 2120 360 1290 360

YFJS18 (289,26) 2082 2341 360 1499 360

YFJS19 (289,26) 1525 2231 360 1333 360

YFJS20 (289,26) 2020 3082 360 1279 360

Numerical simulation results 

Presenter
Presentation Notes
By the way, CPLEX cannot solve a large-scale scenario (i.e., YFJS17) within 10 hours of CPU time.



Autoencoder-embedded EA improves average fitness 
values by 10.8-16.1% over Genetic Algorithm, Cuckoo 
Search with reinforcement learning and surrogate modeling, 
and Knowledge-based Cuckoo Search. 

Numerical simulation results 



Will autoencoder architecture affect?
 - activation function
 - hidden layer

Future Research

52

Relu 𝑓𝑓 𝑥𝑥 = max(0,𝑥𝑥)

Softmax
𝑝𝑝 𝑦𝑦 𝑥𝑥 =

exp(𝑓𝑓𝑦𝑦)
∑𝑐𝑐=1𝐶𝐶 exp(𝑓𝑓𝑐𝑐)

= 𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝑎𝑎𝑥𝑥(𝑓𝑓)𝑦𝑦

Elu
𝑓𝑓 𝑥𝑥 = �−𝑥𝑥 𝑥𝑥 > 0

α(exp 𝑥𝑥 − 1, 𝑥𝑥 ≤ 0

Selu
𝑓𝑓 𝑥𝑥 = λ � 𝑥𝑥 𝑥𝑥 > 0

,α(exp 𝑥𝑥 − 1𝑥𝑥 ≤ 𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠0

Tanh 𝑓𝑓 𝑥𝑥 = tanh
𝑥𝑥
2

sigmoid 𝑓𝑓 𝑥𝑥 =
1

1 + exp(−α𝑥𝑥)

Activation functions Hidden layers



Conclusions

AEO: suitable for large-scale expensive 
problems

SAEO: enhance the performance of AEO 
given limited computational resources

AEO and SAEO: general framework

53
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Welcome your 
questions!

 zhou@njit.edu



Functions
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Functions
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Functions
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F6 Shifted Rotated Rastrigin 



Functions
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F7 Rotated Hybrid Composition Function with narrow basin 
global optimum
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