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1. INTRODUCTION 
 
The LTI state-space equations of a system generally applied in systems and control theory 
 

 

   

dx t( )
dt

= Ax t( ) + bu t( )
y t( ) = cT x t( ) + dcu t( )

 (1) 

 
Here  u  and  y  are the input and output signals of the process, respectively, and  x  is the state vector. The 
parameter matrices of the system are    A,b,cT ,d . Since this paper mainly treats SISO systems, in  n -order 
case, matrix  A  means a  n× n( )  square matrix, which is the so-called state matrix,  b  is a column vector of 

  n×1( )  size,   cT  is a row vector of   1× n( )  size, and   dc  is scalar. 
 
The classical model of the dynamic LTI processes, the transfer function  P s( ) is defined by the ratio of the 
LAPLACE transforms of the output and input signals, which can be easily derived from the state equation (1) 
 

 
    
P s( ) = Y s( )

U s( ) = cT sI − A( )−1 b + dc =
B s( )
A s( )  (2) 

 
where 
 
 



 

 

 

 
     

A s( ) = det sI − A( ) = sn + a1s
n−1 +…+ an

B s( ) = bosm + b1s
m−1 +…+ bm

 (3) 

 
The roots of equation    A s( ) = 0  are called poles; the roots of    B s( ) = 0  are called zeros. A continuous-time (CT) 

linear process is stable, if all roots of the polynomial   A s( ) are located on the left-hand side of the complex 

plane. Concerning the order of the polynomials   A s( ) and   B s( ) it should be noted that the number of the state 

variables is  n ,  m is the order of the polynomial   B s( ), and for physically realizable systems the relation  m ≤ n  

exists. The difference between the order of the numerator and denominator   pT = n− m  is called pole access. 

If   pT >0  then  P s( ) is strictly proper, if   pT =0  then the transfer function is proper. In the practice arbitrary 

relation   0 ≤ pT ≤ n might occur. 
 
 
 
 
 
 
 
 
 



 

 

2. BASIC REGULATOR DESIGN METHODS 
 
2.1. Control loops with state feedback 
 
It was shown formerly how processes are represented in state-space. In many cases this kind of description is 
available only and the transfer function of the controlled system is unavailable. This partly explains why control 
design methodology directly based on state-space description has been evolved. Let us consider the state-
space representation of an LTI process to be controlled such as 
 

 

    

dx
dt

= !x = Ax + bu

y = cT x

 (4) 

 
which corresponds to (1) for the case of   dc = 0 . This does not violate the generality, because it is very rare for 
the model to contain a proportional channel directly affecting the output. The block scheme of (4) and the 
classical state-feedback is shown in Fig. 1, where the thick lines present vector variables and  r  denotes the 
reference signal. 
 
In the closed-loop the state vector is fed back with the linear proportional vector   kT  according to the 
expression 
 
    u = kr r − kTx  (5) 
 
 



 

 

Based on Fig. 1 the state equation of the complete closed system can be easily written as 
 

 

   

dx
dt

= A− bkT( )x + kr br

y = cT x

 (6) 

 
i.e., with the state feedback the dynamics represented by the original system matrix  A  is modified by the 
dyadic product   bkT  to 

  
A− bkT( ) . 
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Figure 1. Linear regulator with state feedback 
 
The transfer function of the closed-loop control is 
 



 

 

 

 

    

Try s( ) = Y s( )
R s( ) = cT sI − A+ bkT( )−1

bkr =
cT sI − A( )−1 bkr

1+ kT sI − A( )−1 b
=

kr

1+ kT sI − A( )−1 b
P s( ) =

=
kr B s( )

A s( ) + kTΨ s( )b

 (7) 

 
which derives from the comparison of equations valid for the LAPLACE transforms,    U s( ) = kr R s( ) − kTX s( )  
(see (6)) and    Y s( ) = cTX s( )  (see (4)) using the matrix inversion lemma. Note that the state feedback leaves 

the zeros of the process untouched and only the poles of the closed-loop system can be designed by   kT . 
 
The so-called calibration factor   kr  is introduced in order to make the gain of   Try  equal to unity (  Try 0( ) = 1). The 
open loop is obviously not of type one, so it cannot provide zero error and unity static transfer gain. It can be 
ensured only if the condition 
 

 

   

kr =
−1

cT A− bkT( )−1
b
= kT A−1b −1

cT A−1b
 (8) 

 
is fulfilled. The above special control loop is called state feedback. 
 
 



 

 

Pole placement by state feedback 
The most natural design method of state feedback is the so-called pole placement. In this case the feedback 
vector   kT  needs to be chosen to make the characteristic equation of the closed-loop equal to the prescribed, 
so-called design polynomial   R s( ), i.e., 
 
 
     
R s( ) = sn + r1s

n−1 +…+ rn−1s + rn = det sI − A+ bkT( ) =A s( ) + kTΨ s( )b  (9) 

 
The solution always exists if the process is controllable. (It is reasonable if the order of  R  is equal to that of 
 A .) In the exceptional case when the transfer function of the controlled system is known, the canonical state 
equations can be directly written. Based on the controllable canonical form the system matrices are 
 

 

    

Ac =

−a1 −a2 … −an−1 −an

1 0 … 0 0
0 1 0 0
! ! " ! !
0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

      ;        cc
T = b1 ,b2 ,…,bn⎡⎣ ⎤⎦     ;         bc = 1,0,…,0⎡⎣ ⎤⎦

T
 (10) 

 
Considering the special forms of   Ac  and   bc , it can be seen that the design equation (9) results in 
 
     k

T = kc
T = r1 − a1 ,r2 − a2 ,…,rn − an⎡⎣ ⎤⎦  (11) 

 



 

 

ensuring the characteristic equation (   R s( ) = 0 ), i.e., the prescribed poles. The choice of the calibration factor 
can be determined by simple calculation 
 

 
  
kr =

an + rn − an( )
bn

=
rn

bn
 (12) 

 
Based on equations (7), (8) and (9) it can be seen that in the case of state feedback pole placement the 
closed-loop transfer function results in 
 

 
   
Try s( ) = kr B s( )

R s( )  (13) 

 
The most common case of state feedback is when not the transfer function but the state-space form of the 
control system is given. It has to be observed that all controllable systems can be described in a controllable 
canonical form by using the transformation matrix   Tc = Mc

c Mc( )−1
. This linear transformation also refers to the 

feedback vector 
 

 
     

kT = kc
TTc = kc

TMc
cMc

-1

kT = bc
T Mc

-1R A( ) = 0,0,…,1⎡⎣ ⎤⎦Mc
-1R A( )

 (14) 

 
The design relating to the controllable canonical form (10), together with the linear transformation relationship 
corresponding to the first row of the non-controllable form (14), is known as the BASS-GURA algorithm. The 



 

 

algorithm in the second row of (14) is called ACKERMANN method after its elaborator. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Equivalent schemes to the state feedback design using transfer functions and polynomials 
 
In the BASS-GURA algorithm, the inverse of the controllability matrix   Mc  needs to be determined by the 



 

 

general system matrices  A  and  b  on the one hand and the controllability matrix   Mc
c  of the controllable 

canonical form, on the other. Since this latter term depends only on the coefficients  ai  in the denominator of 

the process transfer function, the denominator needs to be calculated:     A s( )=det sI − A( ) . Since 

    0,0,…,1⎡⎣ ⎤⎦Mc
-1 is the last row of the inverse of the controllability matrix, and   R A( ) also need to be calculated; 

the ACKERMANN method does not need the calculation of   A s( ). 
 
It is worth mentioning that the state feedback formally corresponds to a conventional PD control and therefore 
over-actuating peaks are expected at the input of the process because the pole placement tries to make the 
process faster. In practice, however, the actuator usually limits the amplitude of the peaks, which needs to be 
taken into account during the design of the poles of the characteristic polynomial   R s( ). 
 
It can be clearly seen that state feedback formally corresponds to a serial compensation    Rs = kr A s( ) R s( )  
(Fig. 2a). The real operation and effect of the state feedback can be easily understood by the equivalent block 
schemes using the transfer functions shown in Fig. 2. The “regulator”   Rf s( ) of the closed-loop is in the 
feedback line (Fig. 2b). The transfer function of the closed-loop is 
 

 
   
Try s( ) = kr B s( )

R s( ) =
kr B s( )

A s( ) +B s( ) =
kr P s( )

1+ Kk s( )P s( ) =
kr A s( )
R s( )

B s( )
A s( ) = kr Rs s( )P s( )  (15) 

 
where 
 



 

 

 

 

    
Rf = Kk s( ) = K s( )

B s( ) =
R s( )−A s( )

B s( ) =
kT sI − A( )−1 b

cT sI − A( )−1 b
 (16) 

 
and the calibration factor is 
 

 
   
kr =

kT A−1b −1
cT A−1b

=
1+ Kk 0( )P 0( )

P 0( )  (17) 

 
Given the block schemes of Fig. 2 it can be stated that the state feedback also stabilizes the unstable terms, 
since due to the effect of the polynomial   K s( ) =R s( )−A s( ) there is a pole placement for any process, so with 

the stable   R s( ) the stabilization is fulfilled. The feedback polynomial   K s( ) formally corresponds to   kT . The 

fact that the numerator   B s( ) of the process is present in the denominator of   Kk s( )  needs special 
consideration. The regulator can be applied only for minimum phase (inverse stable) processes, where the 
roots of   B s( ) are stable. As a consequence of this special character of the state feedback, however, here 

  B s( ) is not substituted by its model   B̂ s( ), but the method itself realizes the exact    1 B s( ). 
 
 
 
 
 



 

 

2.2. Pole placement with pole cancellation  
 
Consider the closed control system shown in Fig. 3, where the regulator   C = A X  is used to place the poles 
of the closed control system according to the characteristic equation   R= 0 , ( R  is the design polynomial) by 
the cancellation of the process poles. To do this,  X  needs to be expressed by the equation  R=X+B . The 
complementary sensitivity function of the closed-loop is 
 

 

   

T =

A
X

B
A

1+ A
X

B
A

= AB
AX+AB

= B
X+B

= B
R

 (18) 

 
The regulator is 
 

 

   

C = A
X

= A
R−B

=

B
R

1− B
R

A
B

=
Rr

1− Rr
P−1 (19) 

 
and actually corresponds to an ideal YOULA regulator (see later) with reference model    Rr = Rn = B R . This 
regulator places the poles in  R  and leaves the zeros in  B  untouched, if they are inverse stable.  
 
 
 



 

 

 

 
Figure 3. Pole canceling regulator 

 
A usual pole canceling regulator is the PI(D) regulator, where in case of PI regulator the transfer function of the 

regulator is 
  
C s( ) = kc

1+ sTI

sTI

, and in case of PID regulator 
  
C s( ) = kc

1+ sTI

sTI

1+ sTD

1+ sTD
' , where   TD > TD

' . 

 
A special case of pole cancellation is the use of the PI(D) controllers where generally not the whole 
denominator of the process is cancelled. PI controller cancels the biggest time constant term of the process 
and in its denominator X(s) introduces an integrating effect. PID controller cancels the two biggest time 
constant terms of the process and introduces in its denominator an integrating effect and a smaller time 
constant. The gain   kc  of the controller is designed to ensure stability and good phase margin for the control 
system. 
 
2.3. Pole placement with feedback regulator 
 
The classical regulator scheme is shown in Fig. 4. The feedback regulator is shown in Fig. 5. 
 
Now the task is again to place the poles of the closed system according to the equation   R= 0 ( R  is the 



 

 

design polynomial). To do this,  K  needs to be determined from the equation  R=K+A . The complementary 
sensitivity function of the closed system is 
 

 

   

T =

B
A

1+ K
B

B
A

= B
A+K

= B
R

 (20) 

 
and thus this regulator places the poles in  R  and leaves the zeros in  B  untouched, if they are inverse stable. 
 
The characteristic equation of the closed system has the form   R= 0  and it does not depend on the unstable 
property of the process. 
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Figure 4. The classical regulator scheme 

 
The block diagram in Fig. 5. can be redrawn as Fig. 2c. (The state feedback methods are discussed in detail in 
Section 2.1, and the same control principle is represented in Fig. 2c among the schemes showing the 
equivalent transfer function representations for state feedback.) 



 

 

 

 
 

Figure 5. The regulator feeds back the internal signal of the process 
 
2.4 Pole placement with characteristic polynomial design 
 
The characteristic polynomial  R  of the closed-loop control can be directly designed by algebraic methods. In 
Fig. 6 the regulator   C = Y X  is the quotient of two polynomials. Under certain conditions, the (Diophantine 
Equation) DE  AX+BY=R  can be solved for  X  and  Y . Thus from the characteristic equation   R= 0  the 
regulator can be directly determined. 
 
The complementary sensitivity function of the closed system is  
 



 

 

 

 

   

T =

Y
X

B
A

1+ Y
X

B
A

= BY
AX+BY

= BY
R

 (21) 

 
and thus this regulator also places the poles in  R  and leaves the zeros in  B  untouched, but in the nominator 
 Y  appears, which depends on the desired properties and also on DE. 
 

 
 

Figure 6. Direct control design on the basis of the characteristic polynomial 
 
Thus the characteristic equation of the closed system has the form   R= 0 and it does not depend on the 
unstable character of the process. 
 
 



 

 

2.5. Regulators based on YOULA parameterization 
 
The YOULA parameter, as a matter of fact, is a stable (by definition), regular transfer function 
 

 
  
Q s( ) = C s( )

1+C s( )P s( )  or shortly 
  
Q = C

1+CP
 (22) 

 
where  C s( )  is a stabilizing regulator, and  P s( ) is the transfer function of the stable process. 
 

 
Figure 7. YOULA-parametrized closed-loop 

 
It follows from the definition of the YOULA parameter that the structure of the realizable and stabilizing regulator 
in the YOULA-parameterized (sometimes called  Q -parameterized) control loop is fixed: 
 



 

 

 

 
  
C s( ) = Q s( )

1−Q s( )P s( )  or shortly 
  
C = Q

1−QP
 (23) 

 
The sensitivity and complementary sensitivity functions of the closed control system are linear in  Q  and are 
calculated by (25). It is interesting to observe that the YP regulator of (23) can be realized by a simple control 
loop with positive feedback as shown in Fig. 7. 
 

 
 

Figure 8. Realization of a YP regulator 
 

A YOULA-parameterized (YP) closed-loop is shown in Fig. 8. 
 
The All-Realizable-Stabilizing (ARS) regulator has the form of (23). 
 
The closed-loop transfer function or Complementary Sensitivity Function (CFS) is 
 
 



 

 

 

 
  
T = CP

1+CP
= QP  (24) 

 
which is linear in the YOULA parameter  Q . It is well known that the YP regulator corresponds to the classical 
IMC (Internal Model Control) structure. 
 
The relationships between the most important signals of the closed system can be obtained with simple 
calculations 
 

 

  

u = Qr −Qyn

e = 1−QP( ) r − 1−QP( )yn = Sr − Syn

y = QPr + 1−QP( )yn = Tr + Syn

 (25) 

 
The effect of  r  and   yn  on  u  and  e is completely symmetrical (not considering the sign). Thus the input of the 

process depends only on the external signals and  Q s( ) . 
 
The IMC form of the control system is shown in Fig.9. Reference signal filter and disturbance filter can be 
introduced to make different transfer properties for reference signal tracking and disturbance rejection (Fig.10, 
Fig.11). 
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Figure 9. IMC form of YOULA parameterization 
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Figure 10. IMC form of YOULA  parameterization with reference and disturbance filters 
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Figure 11. IMC form of YOULA parameterization with filters 
 

From the equation (24) it can be seen that the YOULA parameterization has the transfer function  QPr  
concerning the reference signal tracking. If the KB parameterization is introduced as shown in figure Fig.8, 
then the YOULA parameterization can be extended for TDOF control systems. To do this, let us simply apply a 
parameter   Qr  for the design of the tracking properties, and connect it in serial to the KB-parameterized loop, so 
the block diagram of Fig.12 is obtained. 
 
The overall transfer characteristics for this system are 
 

 

  

u = Qr yr −Qyn

e = 1−Qr P( )yr − 1−QP( )yn = 1−Tr( )yr − Syn

y = Qr Pyr + 1−QP( )yn = Tr yr + 1−T( )yn = Tr yr + Syn

 (26) 

 



 

 

where the tracking properties can be designed by choosing   Qr  in   Tr = Qr P , and the noise rejection properties 
by choosing  Q  in  T = QP . These two properties can be handled separately. The reference signal of the whole 
system is denoted by   yr . The conditions for   Qr  are the same as for  Q . The meaning of   Tr  is analogous to the 
meaning of the complementary sensitivity function  T  of the one-degree-of-freedom control loop for tracking. 
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Figure 12. Two-degree-of-freedom version of the YP control loop 
 
 
 
 
 
 



 

 

3. COMPARISION OF THE PREVIOUSLY DISCUSSED DESIGN METHODS 
 
Control loops with state feedback 
 
The most important advantage of the state feedback regulator, is that the calculation of the feedback vector is 
very simple. The most important disadvantage is that the internal state variables, necessary for the feedback 
are usually not available in the practical tasks. This is why the observer topology is generally necessary to this 
method. Unfortunately this topology is not so simple to compute. Another important disadvantage is that this 
regulator assigns the pole of the closed-loop system, unfortunately it leaves the numerator of the process 
untouched in  T . It is important to know that from the methods discussed in this paper this is the only method 
which is applicable for unstable processes. 
 
Pole placement with pole cancellation  
 
The most important advantage of this method is that it is very simple to calculate the regulator. The 
disadvantage is that this regulator assigns the poles of the closed-loop system, unfortunately it also leaves the 
numerator of the process untouched in  T . 
 
Pole placement with feedback regulator 
 
This method practically can be evaluated on the similar way as the previous method. Unfortunately the most 
important disadvantage is that in a practical task it is very rare that the regulator is in the feedback line. 
 
Pole placement with characteristic polynomial design 
 
This method is a little bit more complex than the pole cancellation method, because the calculation of the 



 

 

regulator needs the solution of a DE. The disadvantage is that this regulator assigns the pole of the closed-
loop system, unfortunately it also leaves the numerator of the process untouched in  T  and puts another 
polynomial in the numerator of  T . This polynomial comes from the solution of the DE, so it is not easy to 
design. 
 
Regulators based on YOULA parameterization 
 
This method is the simplest, because it needs only basic polynomial operations to calculate the regulator. A 
further advantage is that the result of the design is the best reachable  T  even for invariant process zeros, too. 
 
Except the state feedback regulator the other methods are applicable only for stable processes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

4. COMPUTATION OF THE OPTIMAL YOULA REGULATOR 
 
Let us assume the transfer function of the process in the following factorized form 
 
   P s( ) = P+ s( )P s( )− = P+ s( )P− s( )e−sTd  (27) 
 
or shortly 
 
   P = P+P− = P+P−e−sTd  (28) 
 
where  P+  is stable, and its inverse is also stable (Inverse Stable: IS) and realizable (ISR). The inverse of  P−  is 
unstable (Inverse Unstable: IU) and not realizable (Non Realizable: NR), i.e., (IUNR).  P−  is inverse unstable 

(IU). Here, in general, the inverse of the dead-time part   e−sTd  is not realizable, because it would be an ideal 
predictor. 
 
In polynomial form a delay free process is given by 
 

 
  
P s( ) = B s( )

A s( ) =
B+ s( )B− s( )

A s( )  (29) 

 
where   B+ s( ) and   B− s( ) contain the inverse stable and inverse unstable zeros, respectively. 
If the reference model, formulating our design goal is 



 

 

 

 
   
Rn s( ) = Bn s( )

An s( )  (30) 

 
then the optimal YOULA parameter is 
 
    Q s( ) = Rn s( )B+

−1 s( )  (31) 
 
Using this parameterization the optimal YOULA regulator can be calculated as 
 

 
   
C s( ) = Q s( )

1−Q s( )P s( ) =
Rn s( )B+

−1 s( )A s( )
A s( )− Rn s( )B+

−1 s( )B+ s( )B− s( ) =
Bn s( )A s( )

B+ s( ) An s( )A s( )−Bn s( )B− s( )⎡⎣ ⎤⎦
 (32) 

 
The transfer function of the closed-loop system is 
 

 
   
T s( ) = Rn s( )B− s( ) = Bn s( )

An s( )B− s( ) (33) 

 
which is the best reachable result for the case of inverse unstable zeros. This result explains the name: 
“uncancellable” for the inverse unstable factors of the numerator of the process. 
 
For the two-degree-of-freedom version of the YOULA regulator (see Fig.9) an additional reference model 
 



 

 

 

 
   
Rr s( ) = B r s( )

Ar s( )  (34) 

 
must also be calculated. 
 
It can be well seen in this section that the computation of the YOULA regulator requires only very simple 
polynomial operations (additions and multiplications). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

5. EXAMPLES 
 
Example 5.1. Let the CT process be given by a non-minimum phase transfer function 
 

 
  
P s( ) = 1+ sτ1( ) 1− sτ2( )

1+ sT1( ) 1+ sT2( ) 1+ sT3( )  (35) 

 
where   T1 = 10sec  ;   T2 = 5sec ;   T3 = 2sec  ;  τ1 = 6sec  and  τ2 = 4sec , where    B+ = 1+ sτ1( )  and    B−= 1− sτ2( ) . 
 
The selected reference model is 
 

 
   
Rn s( ) = Bn s( )

An s( ) =
1+ sτn1

1+ sTn1
= 1

1+ sTn1
 (36) 

 
where   Tn1 = 5sec  ;  τn1 = 0 . 
 
The optimal YOULA regulator can be calculated as 
 

 
   
C s( ) = Bn s( )A s( )

B+ s( ) An s( )A s( )−Bn s( )B− s( )⎡⎣ ⎤⎦
=

1+ sT1( ) 1+ sT2( ) 1+ sT3( )
1+ sτ1( ) 1+ sTn1( ) 1+ sT1( ) 1+ sT2( ) 1+ sT3( )− 1− sτ2( )⎡⎣ ⎤⎦

 (37) 

 
Using the numerical values the regulator is 



 

 

 

 

  
C s( ) = 1+17s + 80s2 +100s3

s 1+ 6s( ) 1+ 2.273s + 4.454s2( )  (38) 

 
The overall transfer function of the closed-loop system is 
 

 
   
T s( ) = Rn s( )B− s( ) = 1− sτ2

1+ sTn1
= 1− 4s

1+ 5s
 (39) 

 
Because usually the reference model has unity gain, i.e. 
 
   Bn 0( ) =An 0( ) (40) 
 
it follows, that   T 0( ) = 1 has also unity gain. 
 
The usual normalization of the process polynomial means that   A 0( ) = 1 and   B− 0( ) = 1 (while   B+ 0( ) ≠ 1) it can 
be easily checked that the YOULA regulator is always an integrating regulator for (40). 
 
Example 5.2. The CT process is now given by the transfer function  
 

 
  
P s( ) = 6

s +1( ) s + 2( ) s + 3( )  (41 

 



 

 

Let us design regulators with all the discussed methods and compare their behavior. 
 
a./ Pole placement with state feedback. 
 
Let the prescribed poles of the closed loop system obtained by state feedback be:  −6 ;   −3+ 4× i ;   −3− 4× i . 
Thus the prescribed characteristic polynomial is 
 
   R s( ) = s3 +12s2 + 61s +150  (42) 
 
The controllable canonical form of the state equation is: 
 

 

  

A =
−6 −11 −6
1 0 0
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

     ;     

  

b =
1
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

     ;       c = 0 0 6⎡⎣ ⎤⎦      ;       d = 0  (43) 

 
The state feedback vector calculated according to (11) is 
 

   k = 6 50 144⎡⎣ ⎤⎦
T

 (44) 
 
and the value of the calibration factor calculated according to (8) is 25. The calculations can be also supported 
by MATLAB control toolbox. 
 
The step response of the plant and of the controlled system is shown in Fig.13. 
 



 

 

 

 
 

Figure 13. Step response with state feedback control 
 
b./ Pole placement with pole cancellation 
 
According to (19) 
 

 

   

C = A
X

= A
R−B

=

B
R

1− B
R

A
B

=
Rr

1− Rr
P−1 (45) 

 



 

 

In order to eliminate steady state error let us divide the characteristic polynomial  R  by a factor which ensures 
that its constant term will be equal to   B 0( ) , so the controller will be of integral type. 
 
 
  
Rm s( ) = s3 +12s2 + 61s +150( ) / 25 (46) 

 
So the transfer function of the controller is 
 

 
  
C s( ) = s3 + 6s2 +11s + 6

0.04s3 + 0.48s2 + 2.44s
 (47) 

 
The step response is shown in Fig.14 and the control signal is given in Fig.15. 
 
It is seen that overexcitation in the control signal ensures acceleration of the output signal. Of course there is a 
practical limit of the control signal provided by the actuator. 
 
 
 
 
 
 
 
 
 
 



 

 

 

 
 

Figure 14. Step response with pole cancellation 
 
c./ Pole placement with feedback regulator 
 
In this solution the overall transfer function is given by (20). Again, to ensure unity transfer gain the 
characteristic polynomial  R  should be normalized to have the same constant term as   B 0( ) . 
 
 



 

 

 

 
 

Figure 15. Control signal in case of pole cancellation 
 
d./ YOULA parameterized regulator design 
 
Let the transfer function of the reference signal filter be 
 

 
  
Rr s( ) = 150

s3 +12s2 + 61s +150
 (48) 

 



 

 

which ensures the poles of the characteristic equation as shown in point a./. 
 
Let the transfer function of the noise filter be  
 

 

  
Rn s( ) = 64

s + 4( )3
= 64

s3 +12s2 + 48s + 64
 (49) 

 
The YOULA parameter is 
 

 
  
Q s( ) = Rn s( )P−1 s( ) = 64

6
s +1( ) s + 2( ) s + 3( )

s3 +12s2 + 48s + 64
 (50) 

 
The output signal as response to a unit step reference signal and the output signal as a response to unit step 
disturbance is shown in Fig.16. 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 
 

Figure 16. Unit step reference signal tracking and disturbance rejection 
of the Youla parameterized controller 

 
Example 5.3. Let the CT process be given by a non-minimum phase transfer function 
 

 
   
P s( ) = B s( )

A s( ) =
1+ sτ1( ) 1− sτ2( )

1+ sT1( ) 1+ sT2( ) 1+ sT3( ) =
B+ s( )B− s( )

A s( ) = P+ s( )B− s( )  (51) 

 
 



 

 

where   T1 = 10sec  ;   T2 = 5sec ;   T3 = 2sec  ;  τ1 = 6sec  and  τ2 = 4sec , where    B+ = 1+ sτ1( )  and    B−= 1− sτ2( ) . 
Furthermore 

  
P+ s( ) = B+ s( )

A s( )  and   Q s( ) = Rn s( )P+
−1 s( )  should be proper. 

 
The selected reference model is 
 

 
   
Rn s( ) = Bn s( )

An s( ) =
1

1+ sTn1( ) 1+ sTn2( ) =
1

1+ 2s( ) 1+ s( )  (52) 

 
where   Tn1 = 2sec  and   Tn2 = 1sec . Then 
 

 
  
Q s( ) = 1

1+ 2s( ) 1+ s( )
1+10s( ) 1+ 5s( ) 1+ 2s( )

1+ 6s
=

1+10s( ) 1+ 5s( )
1+ s( ) 1+ 6s( )  (53) 

 
and  

 
  
C s( ) = 0.1428

1+10s( ) 1+ 5s( ) 1+ 2s( )
s 1+ 0.2857( ) 1+ 6s( )  (54) 

 

 
  
T s( ) = 1− 4s

1+ s( ) 1+ 2s( )  (55) 

 



 

 

The step response of the plant and of the controlled system is shown in Fig.17. 
 

 
 

Figure 17. YOULA control of a non-minimum phase plant 
 
It is seen that the output is settled faster, but in the first instants the output goes to negative values. With 
reference signal filter the output can be further modified. 
 
Because usually the reference model has unity gain, i.e. 
 
   Bn 0( ) =An 0( ) (56) 
 



 

 

it follows, that   T 0( ) = 1 has also unity gain. 
 
The usual normalization of the process polynomial means that   A 0( ) = 1 and   B− 0( ) = 1 (while   B+ 0( ) ≠ 1) it can 
be easily checked that the YOULA regulator is always an integrating regulator for (55). 
 
Example 5.4. Investigate now a discrete-time (DT) case, when the pulse transfer function of the process is a 
second order system 
 

 
  
G z( ) = −0.32 z −1.25( )

z − 0.8( ) z − 0.6( ) = G− z( )G+ z( ) (57) 

 

where 
  
G− z( ) = z −1.25

−0.25
 is the uncancellable part containing a zero outside of the unit circle and 

 

 
  
G+ z( ) = −0.25 ⋅−0.32

z − 0.8( ) z − 0.6( ) =
0.08

z − 0.8( ) z − 0.6( )  (58) 

 

is the cancellable part of the pulse transfer function. 
 
The noise reference model is 
 

 
  
Rn z( ) = 0.6

z − 0.4
 (59) 

 

The relationships given for continuous systems are valid for the pulse transfer functions of the discrete systems 



 

 

as well. The YOULA parameter is 
 

 
  
Q z( ) = Rn z( )G+

−1 z( ) = 0.6
z − 0.4

z − 0.8( ) z − 0.6( )
0.08

= 7.5
z − 0.8( ) z − 0.6( )

z − 0.4
 (60) 

 
and the optimal YOULA regulator can be computed now as 
 

 
  
C z( ) = Q z( )

1−Q z( )G z( ) =
2.2059 z − 0.8( ) z − 0.6( )

z −1
 (61) 

 
Fig.18 shows the unit step response of the plant and of the controlled system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 
 

Figure 18. Unit step responses of the plant and the controlled system 
 
Example 5.5 Discrete YOULA controller of a system with dead time 
 
The transfer function of the continuous process is 
 

 
  
P s( ) = 1

1+ 5s( ) 1+10s( ) e−30s  (62) 

 
The sampling time is   Ts = 1sec . The reference signal and disturbance filters are obtained by sampling the 
systems given by transfer functions  
 



 

 

 

 
  
Rr s( ) = 1

1+ 2s
      and     

  
Rn s( ) = 1

1+ 4s
 (63) 

 
Design the YOULA controller and give the output and control signals in the sampling points. 
 
The pulse transfer function of the process P(s) is: 
 

 
  
G z( ) = 0.0090559 z + 0.9048( )

z − 0.9048( ) z − 0.8187( ) z−30  (64) 

 
Let us separate it to the cancellable  G+ z( )  and the noncancellable  G− z( )  factors.  G− z( )  should be 
normalized for transfer gain 1. 
 
The pulse transfer functions are given with the shift operator   z−1:  
 

 

  

G− z( ) = 1+ 0.9048z−1

1.9048

G+ z( ) = 0.0090559 ⋅1.9048z−1

1− 0.9048z−1( ) 1− 0.8187z−1( )
 (65) 

 
The pulse transfer functions of the filters: 
 



 

 

 

 
  
Rr z( ) = 0.39347z−1

1− 0.6065z−1  and 
  
Rn z( ) = 0.2212z−1

1− 0.7788z−1  (66) 

 
The YOULA parameter is given by 
 

 
  
Q z( ) = Rn

G+

= 12.82
1− 0.9048z−1( ) 1− 0.8187z−1( )

1− 0.7788z−1  (67) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

6. CONCLUSIONS 
 
It was shown that the YOULA regulator design is a very simple procedure, which is applicable for all kind of 
(minimum or non minimum phase) CT and DT processes. The computation of the regulator is very simple, 
requires only polynomial operations. 
 
For reasonable design goal this design results in an integrating regulator. 
 
This regulator ensures the theoretical best reachable closed-loop property of the control system. 
 
YOULA controller design is superior to the other controller design methods, as the equations giving the 
relationships between the input and the output signals are linear in the parameter  Q . For controlling systems 
with dead time this method gives straightforward solution for controller design. 
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“I believe that the progress of science should be 
rather measured by the raised and not 
by the solved problems !” 
Eddington 
 

“If everyone loughs at you, you are one step ahead, 
If everyone says, you are wrong, you are two steps ahead.” 

Eddington 
 

 


