
Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 413

Cost Model for Near Real-time Recommender
Systems

József Marton, Zsolt T. Kardkovács, Péter Éberhardt
Database Research Labs
Department of Telecommunication and Mediainformatics
Budapest University of Technology and Economics
Magyar tudósok krt. 2, H-1117 Budapest, Hungary
{marton, kardkovacs, eberhardt}@db.bme.hu

Abstract: In this paper, we propose computational foundations of near real-time
recommender systems by discussing how computational resources and limits on latency and
response time requirements meet in a recommender system. A range of online applications
use recommendation engines to help customers find what they need or are interested in, e.g.
web shops, news services, and even computer assisted project planning. Such applications
focus on slowly changing needs, and give at least locally time-invariant, non-concurrent
(or at least non-correlated), or even offline calculated recommendation; hence, they need
no real-time modelling of customers’ behaviour. Nevertheless, well-known recommendation
engines fail whenever large amount of rapid and continuous changes are made over time,
e.g. in handling economic events.
While offline recommendation engines are widely discussed, characterization of cost
components, and modelling of real-time recommendations are missing from the literature.
In this paper, we discuss end-to-end data flow, i.e. how to transform and flow data from the
source system through a near real-time data warehouse to end in a recommender system.
We identify cost components of continuous flow execution in a multidimensional cost space.
We determine criteria on how much computational resources are needed based on input
data size, latency, and response time requirements. We also discuss the limits of latency
and response time requirements given the computational resource constraints.

Keywords: cost model, near real-time recommender system

1 Introduction

A wide range of on-line applications utilize recommender systems to orient users
to the resources they need or they might be interested in. Such applications might
adjust the model based on continuously acquired data, to follow changes in client
needs. Other applications might utilize static models created by experts on startup
and adjusted in some off-line fashion. These applications traditionally have the

J. Marton et al.
Cost Model for Near Real-time Recommender Systems

 414

common base that, if present, only a small amount of (or even no) data flows in
the model adjuster process. As data the model bases upon change slowly, the
computational capacity needed to adjust the model is relatively low.

In contrast, when significant amount of data flows in continuously and model
needs on-line updating, required computational capacity matters. To allow sizing
of resources in recommender systems for operations of high computational
complexity, we need to model the end-to-end flow of data including
transformation that take place.

In case of near real-time systems sizing is more complicated as it is not enough to
consider long-term average: peak load need also be handled in a specific time-
frame in order information not to loose from its value. This puts more stress on the
need to model the flow and give its cost components.

In this paper we characterize an end-to-end data flow of recommender systems in
general. We also identify points in the flow where filtering, preprocessing, i.e.
data quality assurance, transformation and model adjustation take place. Based on
the model we identify cost components and relation among them to allow for near
real-time processing.

The rest of this paper is organized as follows. Section 2 describes the related work
and Section 3 gives generalized flow of data in a recommender system through a
data warehouse. Section 4 identifies cost components and gives criteria for near
real-timeness. Section 5 concludes and gives directions for future works.

2 Related Work

Recommender systems and thus related work ranges from industrial applications
to research laboratories. Examples for industrial applications include on-line
stores, e.g. e-Bay1 offering top and related auctions, news portals, e.g. Yahoo
News2 featuring top stories and related searches, and community portals with
recommender services based on social networks.

On the research labs’ side, one can find various current topics. Web sites often
have a deep structure, but users prefer having short path to reach areas they might
be interested in. Context-based hotlink assignment methods enable flattening of
the structure [1] thus allowing users to reach expected information with less
transitions.

1 http://www.ebay.de/
2 http://news.yahoo.com/

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 415

Quality of recommender systems can be enhanced by utilizing information from
social networks. Victor et. al. proposes using trust networks [3] for recommender
systems. As trust is not a binary concept, they use fuzzy sets and this concept is
shown to be beneficial in term of quality and even quantity of recommendation.

The so called cold-start problem occurs, whenever new users join the system and
they need to be provided with personal recommendations. Besides
recommendation inferred from trust-networks and preferences of users they trust
[3], one other approach could be based on preferences of the global user
community or some cluster of them. One other promising approach could be based
on feed-forwarding of data on current activities of the selected user group (i.e.
global or the appropriate cluster).

There's one other aspect of the cold-start problem. In case that brand new items
appear in the system how do we determine to whom to recommend it. Feature-
extraction based approach is proposed for music recommendation [2] to overcome
this problem as tagging might be expensive, cause latency before particular item is
available for recommendation etc.

Recommender systems can also be utilized in various other areas, e.g. in
computer-assisted project planning. Yang et. al. proposes a revised case-based
reasoning algorithm [4] to assist project managers planning their projects.
Basically it consists of two steps. First, similar cases are retrieved from the
knowledge base, to allow for data-mining in the second step and improve
reasoning upon the retrieved cases.

3 Flow of Data

In this section we give in details the generalized data flow from source systems to
end in the recommendation delivered to clients. We use an approach where data,
the recommender model works on, reside in a data warehouse in some structure
optimized for analytics. Data paths in the recommender system are shown on
Figure 1.

Data route from source systems to clients targeted by the recommender system
consists of three main stages. The transformation engine converts raw source data
to a form that allow loading in the DW data warehouse. The in-data-warehouse
analytics runs the model and streams output to the Rep recommendation repository
where client requests)1:(N}{xClientx …∈ are served from. Details follow
in subsections.

J. Marton et al.
Cost Model for Near Real-time Recommender Systems

 416

Figure 1
Data flow paths in a recommender system utilizing a data warehouse

3.1 Transformation Engine

Records from source systems S stream in the transformation buffer BT. Buffer is
utilised here in order to enable batch transformation for higher efficiency. Main
role of the transformation system is to convert (i.e. preprocess) raw source records
to some form optimized for analytics. Transformation engine is fed with control
and auxiliary data from data warehouse that drive transformation.

Transformation engine in general emits two output sets: the detail records for
analytics and aggregated records. These two record sets are denoted by D and
Agg, respectively.

3.2 Data Warehouse and Analytics

The second, an inevitably the most important stage in a recommender system
backed by a data warehouse is the data warehouse itself with the analytics inside.

The data warehouse component can be seen as a composition of the detail and
aggregated data store fed by the transformation engine as we have seen above.
Aggregated data store contains pre-calculated data to offload repeated
computational tasks from the analytics component, while detail data store contains
elementary records observed by the source system.

Preprocessed (detail and aggregated) data arrive in the load buffer BL to allow for
batch – hence more effective – loading into the data stores. Once data is loaded
running the analytics is the next step.

The in-data-warehouse analytics has four inputs besides state it maintains in case
of stateful models. Detail and aggregated data store are the main inputs of the
model. Additionally, particular subset of records from the data warehouse load
buffer and the transformation buffer might be fed forward. Feeding forward the
contents of the mentioned buffers adds more complexity to the system as two

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 417

more source formats need to be handled by the recommender model. On the other
hand it gives the system the possibility to react on critical events as soon as
possible, thus partially decreasing its latency.

Output of the analytics (denoted by An) is transferred to the recommendation
repository.

3.3 Recommendation Repository

The last but not least stage of data flow in the recommender system is the
recommendation repository. Clients of the recommender system connect here. It is
a fairly technical stage that off-loads end-user servicing from the data warehouse
side thus might free valuable resources. Introducing this layer also allows us to
isolate previous components from the outside world, i.e. isolate from clients.
Should sensitive (e.g. personal or business) data reside in the data warehouse, this
additional layer comes also handy for security audits.

We have seen that the output of analytics is stored here. This output might be of
two forms. The first and obvious form of analytics’ output is pre-calculated
recommendation. In this case all answers for queries that may arise during some
time frame are stored in the repository and simply returned upon query.

One other option is to store the recommendation as a function ReCR →: ,
where C is the context-set the recommender takes into account while calculating
its output: the recommendarion Rere∈ .

4 Cost Model for Data Flow

Building on the generalized data flow in recommender systems in this section we
give cost components that arise throughout the system.

4.1 Notations and Basic Characteristics

Notations to describe cost components of a recommender system are given in
details in Table 1.

J. Marton et al.
Cost Model for Near Real-time Recommender Systems

 418

Table 1
Notations used in cost equations for data flow in recommender systems

Notation Description

T Time periodicity the system operates at

N Maximum concurrent clients

sS Source record size

sD Transformed detail record size

sAgg Transformed aggregated record size

rS(t) Source record rate as a function of time

rD(t) Detail record rate as a function of time

rAgg(t) Aggregated record rate as a function of time

rTr(t) Transformed record rate as a function of time

rAn(t) Record rate of Analytics result

BT Transformation buffer, or its size3

BL Data warehouse load buffer, or its size4

cTr(k) Transformation cost of k records

a(M, H, F) Stateful analytics with M memory, H historical data and F
forward-fed data

ca Cost function of analitics. Details given in Section 4.1

sizeof(.)
sf(.)

The size of the indicated data set.
Abbreviated as sf.

(v)X Value of component X of vector v.

As a rule of thumb size and rate-ralated notations can be summarized as follows.
Record size and record rate as a function of time t for some given x record set as
seen in Section 3 is denoted by sx and rx(t), respectively.

The cost function of analytics is the +Nd ∈ dimensional vector-valued function
in case of d resources (i.e. d-dimensional cost space):

 () () () ()() d
FH,M,a RRFsizeof,Hsizeof,Msizeofc →3:

3 Context determines this choice.
4 Context determines this choice.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 419

The (CPU time, Memory) 2-dimensional cost space arises as a natural example.

Before proceeding to more complex cost formula, we examine basic properties of
the amounts defined above.

To allow for data processing without loss of input data, buffer overflow is to be
avoided on transformation input and data warehouse load.

That is, if the system operates with a time periodicity of T, following are required
to be held.

() TS

Tt

t
S Bdtstrt ≤∀ ∫

+

: (1)

() () LAgg

Tt

t
AggD

Tt

t
D Bdtstr+dtstrt ≤∀ ∫∫

++

: (2)

Let's move to the transformation cost function ()kcTr . An optimal transformation
method's cost function satisfies the following order-of-magnitude estimation using
the big-O notation.

() ()()1TrTr ckO=kc ⋅ (3)

Should the transformation cost function not satisfy (3), performance gain could be
achieved using one-by-one transformation of input records, which would
contradict the optimality of the transformation method. Please note that
transformation cost function is a scalar function expressing CPU time required for
the transformation.

4.2 Cost of the Flow

In order to express an upper estimation of CPU time cost of a flow iteration on
records gathered during the time period [t, t+T), we introduce some utility
functions.

The amount of fresh data gathered during the time period [t+T, t+2T), i.e. during
processing of previous batch is expressed as in (7). Components summarized stand
respectively for data gathered in the transformation buffer, detail and aggregated
records in the load buffer.

() dtstr=F S

Tt

Tt
ST2 ∫

+

+

2

 (4)

J. Marton et al.
Cost Model for Near Real-time Recommender Systems

 420

() dtstr=F D

Tt

Tt
DD2 ∫

+

+

2

 (5)

() dtstr=F Agg

Tt

Tt
AggAgg2 ∫

+

+

2

 (6)

() () Agg2D2T2 F+F+F=Fsizeof=Fsf 22 (7)

Computer storage is bounded. We may thus assume that amount of historical data
is bounded. Let's denote this bound by sf(HB). From now on we will use this upper
bound in place of sizeof(H). As long as we does not mix inequality directions (i.e.
we don't mix ≤ and ≥), this would not mislead us and will definitely simplify the
expressions inferred. Having the size of fresh data expressed in (7), we can now
express CPU time cost of the analytics running for data gathered during time
period [t, t+T) as given in (9).

() () () ()()2Fsf,Hsf,Msfc=c BFH,M,aAn1 (8)

()CPUtimeAn1An1CPU c=c (9)

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫
+

dttrc=c
Tt

t
STrTr1 (10)

Equation (10) gives us the transformation cost of records gathered during time
period [t, t+T). Now we have all the components to express in (11) the whole
CPU cost of one iteration starting at time point t in the system. This very formal
result simply says that CPU cost of the system for a given time period is expressed
as the sum of the cost of transformation and cost of analysis.

() An1CPUTr1 c+c=Tt,c (11)

4.3 Criteria for Near Real-timeness

We say that a recommender system modelled in the way given above is near real-
time if

• response time of the system stays under a given limit most of the time,
and

• processing of data does take shorter than the time interval during it was
produced.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 421

The second criterion does not allow unprocessed records to accumulate and lead to
performance degradation, while the first criterion expresses clients' need for rapid
responsiveness of the system.

Rapid responsiveness solely depends on the performance of the recommendation
repository. Let us L denote the limit of response time clients find adequate. In this
case, servicing the request may take at most L/N long on the repository side to
ensure response even in the event of peak load.

Until now we used the assumption that this recommender system operates having
a time periodicity of T. As this does not contradict near real-timeness, we can
retain this assumption.

Using (11) and what we got just above, the criteria set for the data warehouse-
based recommender system to operate in a near real-time fashion can be
formulated as follows.

() TTt,ct ≤∀ : (12)

Tc+ct An1CPUTr1 ≤∀ : (13)

Criterion (13) also holds when +T 0→ as long as (1) and (2) (as seen in
Section 4.1) holds for all t.

Conclusion and Future Work

In this paper we gave components of a generalized recommender system that is
backed by a near real-time data warehouse and operates in-data-warehouse model.
We also introduced use of feed-forwarding of subset of data to the analytics to
allow reacting faster on particular behaviour changes on the clients' side.

We introduced notations and inferred the CPU cost equation in (11) in terms of
input data and recommender algorithm characteristics (i.e. transformation and
analytics methods). Following the way we generalized the cost equation formula
for near real-time recommender systems. We also showed that the formula retains
for smaller operational period of T as long as buffer overflow does not occur.

An interesting area for future work is to extend our cost model to utilize
stochastical properties of functions describing record rates.

One other approach could be to investigate, how modification of requirements
affect our model. One modification could be to require (12) to hold only at certain
probability. This might lead to virtual increasement in computational capacity the
recommender system has at its disposal.

References

[1] D. Antoniou, J. Garofalakisa, C. Makrisa, Y. Panagisa, E. Sakkopoulosa.
Context-similarity-based Hotlinks Assignment: Model, Metrics and

J. Marton et al.
Cost Model for Near Real-time Recommender Systems

 422

Algorithm. Data and Knowledge Engineering, 2009, Accepted for future
publication

[2] C.-C. Lu, V. S. Tseng. A novel Method for Personalized Music
Recommendation. Expert Syst. Appl., 36(6):10035-10044, 2009

[3] P. Victor, C. Cornelis, M. De Cock, P. Pinheiro da Silva. Gradual Trust and
Distrust in Recommender Systems. Fuzzy Sets Syst., 160(10):1367-1382,
2009

[4] H.-L. Yang, C.-S. Wang. Recommender System for Software Project
Planning One Application Os Revised Cbr Algorithm. Expert Syst. Appl.
36(5):8938-8945, 2009

