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Introduction: Research goals

* Determine the most accurate machine learning algorithm for
detecting physical activity of patients by using blood glucose
measurements

* Evaluate the accuracy and effectiveness of various machine
learning algorithms

e Build a simulation framework for data generation

* Develop solution for easy implementation and testing of genuine
patient data




Introduction

* Diabetes mellitus (DM): chronic metabolic disease

o Type 1 DM (T1DM): body is unable to produce insulin
internally and patients must have external insulin
administration

o Type 2 DM (T2DM): body produces insufficient insulin to
reduce the blood glucose levels

* Planned physical activity helps regulate blood glucose levels and
improves the metabolic system

* Machine learning application for recognizing physical activity
using only available patient information

* Develop platform for massive data generation using the extended
Jacobs T1DM simulator
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Applied dataset

* Generate synthetic data by using the extended Jacobs TIDM
simulator

e Jacobs T1DM simulator:

 employs the Cambridge-model that contains embedded
physical activity sub-model

e provides 20 virtual TIDM patients (based on 3.5-day
outpatient Artificial Pancreas study)

e used single hormone virtual patient population where the
simulator expects the insulin as control input only

 Completed with Continuous Glucose Monitoring System
(CGMS) model for better data generation




Applied dataset

* Applied regimens by using randomization of time instances and
amounts of CHO intake:
o Time of meal consumption: from -30 to +90 min

o Default time instances in the simulator: breakfast (6 am),
lunch (12 pm), and dinner (6 pm)

o Amount of breakfast: 35+10g

o Amount at lunch: 79+ 10¢g

o Amount atdinner: 117+ 10g

o Duration of physical activity: from 30 to 90 min

o Blood glucose level at the beginning of the day: 160 + 20
mg/dL




Datasets
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Applied dataset

* The ground truth of the dataset:

o Patient’s body weight w

o End-to-end blood glucose level change d:
d= bg(14) — bg(0)

o Blood glucose level variation between consecutive sampled
points:

dp(i)=bg(i+1)— bg(i), forany i=0,..13




Applied dataset

o End-to-end blood glucose level change in all inclusive sliding
windows:

dpp (1) = bg(57/+ 4) — bg(57), forany i=0,...,2

o Second order changes of the blood glucose level:

ap(i)=dp(i+1)—dp (i)
= bg(i+2)—2x bg(i+ 1)+ bg(i),
forany 7=0,..,12

o The decision dc is used as ground truth
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predcion

* Binary classification for each feature vector:
* no physical activity: 0
* physical activity: 1
* Machine learning models (multi-layer perceptrons) are used to
predict the probability of physical activity

* To be interpreted in binary mode, a threshold is applied to the
predicted probability

 Other models (decision tree) do not need threshold and can
provide binary output directly
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Machine learning models

* Machine learning algorithms:

Logistic Regression

AdaBoost Classifier
DecisionTree Classifier
Gaussian Naive Bayes
K-Nearest Neighbors Classifier
Support Vector Machines
Random Forest

o O O O O O O O

Multi-Layer Perceptron Networks




Machine learning models: testing

* Implementation tools: Python v2.7 with the Scikit package
» Split of available feature vectors:

o training dataset: 75% randomly selected
o test dataset: 25% assigned for evaluation

e Feature vectors in the training data set were shuffled

* The trained classifiers were applied to predict the presence or
absence of physical activity for all feature vectors in the test
dataset
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Performance evaluation

* Performance evaluation: count true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN)

Establish statistical benchmarks

Accuracy (ACC):

TP+TN
TP+TN+ FP+FN

ACC =

Sensitivity or true positive rate (TPR):

TPR =

TP+ FN

True negative rate (TNR):

TNR =




Performance evaluation

* Positive prediction value (PPV):

PPV = ——
v TP + FP
* False positive rate (FPR):
FPR= ———
TN + FP
e Fl1-score or Dice score:
_2-TRP-TNR 2.-TP

Fy =

TPR+TNR 2-TP+ FP + FN
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Confusion matrix for tested classification models
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Classifiers AUC

True Positive Rate

LogisticRegression

AdaBoost

KNN

DecisionTree

Gaussian

SVM kernel=rbf degree=5
SVM kernel=sigmoid degree=5
SVM kernel=poly degree=3
SVM kernel=poly degree=5
SVM kernel=poly degree=10
Random Forrest

MLP activatiom=logistic

MLP activation=relu

MLP activation=tanh
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Classifier | PPV TPR __F; _ TNR FPR  ACC
LogReg | 0.149 0.778 0250 0.778 0222 0.778
Ada 0.198 0832 0320 0832 0.168 0.832
KNN | 0688 0.899 0779 0980 0.020 0.976
DecTree | 0.813 0.833 0.823 0990 0.010 0.983
Gauss | 0.157 0789 0261 0789 0211 0.789
MLP1 | 0239 0.863 0374 0863 0.137 0.863
MLP2 | 0237 0.862 0372 0862 0.138 0.862
MLP3 | 0217 0.848 0346 0.848 0.152 0.848
RF 0537 0926 0.680 0960 0.040 0.959
SMV1 | 0.111 0.716 0.193 0716 0284 0.716
SVM2 | 0.125 0742 0215 0742 0258 0.742
SVM3 | 0024 0326 0044 0326 0.674 0326
SVM4 | 0022 0310 0041 0310 0.690 0.310
SVMS | 0.000 0.000 0.000 1.000 0.000 0.953
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Concusions

* Introduced a machine learning based framework for detecting
physical activity using features extracted from blood glucose
samples taken at five minutes intervals

* Several classification models were employed using various
parameter settings

* The best classifiers: Decision Tree, K-Nearest Neighbors, and
Random Forest

* Other models may be suitable: they need additional mechanisms
to avoid false positives
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