
Óbuda University, Budapest, Hungary

CINTI 2020

Nov. 5-7, 2020



Contents

Contents

1. Background

– Hungarian Myocardial Infarction Registry (HUMIR)

– Myocardial Infarction 

2. Research

– Authors former publications on the topic

– Dataset, Prediction targets

– Generalized Boosted Models

– Comparison with Random Forest model

– Results & Conclusions



Hungarian Myocardial Infarction Registry (HUMIR)

HUMIR
Myocardial Infarction

Random Forest
Research details

Results & Conclusions

The Hungarian Myocardial Infarction Registry (HUMIR)
focuses directly on myocardial events and treatments.

- In 2014: the Hungarian government made it mandatory for 
hospitals to participate in the project in the whole country 
and report all cases to the registry [1].

- Hospitals, cases, patients: Until 1st of Oct 2020, the 93
participating hospitals reported 127,249 cases in 116,029
patients [2]. 

- Purpose of the registry: To audit the quality of care of 
patients with acute myocardial infarction and provide a 
database for scientific research.
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Significance: Cardiovascular disease (CVD) continues be one of the most 
serious health problem of mankind. 10 leading causes accounted for 
74.1% of all registered deaths in US - and this causes in 2016 were the 
same as in 2015. In this Top 10 list, heart disease can be found in the 1st 
position [3]

Incidence – in Hungary, Budapest [4]: out of 10.000:
- Man: 28,63
- Woman: 16,21

Two main types:

- STEMI: there is a pattern known as ST-elevation on the EKG („ST 
elevation myocardial infarction”)

- NSTEMI: there is elevation of the blood markers suggesting heart 
damage, but no ST elevation seen on the EKG
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An Overview of Myocardial Infarction Registries and Results from the 
Hungarian Myocardial Infarction Registry [1]:

History and early results of HUMIR. Conclusion: Only a few such registers 
exist in Europe. 

Comparing machine learning and regression models for mortality 
prediction based on the Hungarian Myocardial Infarction Registry [5]:

Conclusions: The difference between the predictive power of our neural 
network and logistic regression models were not significant, but decision 
tree was not able to achieve such a performance.

Comparing the predictive power of decision tree models with different 
tuning approaches on Hungarian Myocardial Infarction Registry [6]:

Conclusions: On the investigated dataset, repeated cross validation 
slightly outperformed cross validation and both had significantly better 
results than models trained with bootstrap method.
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Random Forest-based predictive modelling on Hungarian Myocardial 
Infarction Registry [7]:

Conclusions: 

- Random Forest (RF) models clearly outperformed our previously 
reported decision tree (DT) models: improvement of 5.5% and 7.3% 
(30-day models, training and validation); 8.1% and 9.2% (1-year 
models, training and validation)

- The most important features in RF models - 30-day mortality: Age, 
Cardiogenic shock, Smoking, Hyperlipidaemia and Level of creatinine. 
1-year mortality: 4 more features reached the same level of 
importance: Hyperlipidaemia, Heart failure, Peripheral artery disease 
and Percutan coronary intervention

- The RF models represent a stable learner. Standard deviations: 0.0047 
(30-day) and 0.0036 (1-year) on the validation datasets.
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Our patient record consists of the following fields. These

23 variables can be categorised into 3 homogene groups:

Group 1: General information about the patient (Event ID, Patient ID, If 
the patient alives, Date of death, Gender, Date of birth, ZIP code)

Group 2: Previously reported diseases (Myocardialis infarctus, Hearth 
failure, Hypertonia, Stroke, Diabetes,Peripheral vascular disease, 
Hyperlipidaemia, Smoking)

Group 3: Information about the pre- and in-hospital treatment 
(Prehospitalis reanimatio, Cardiogenic shock, Percutaneous Coronary 
Intervention, Level of creatinine, Diagnosis, Treatment ID, Date of 
admission, Creatinine)
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Target variables: 30-day and 1-year mortality. Missing data: multiple imputation, Fully 
Conditional Specification and Bayesian linear regression, 5 imputations.
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Boosting is the process of iteratively adding basis functions in a 
greedy fashion so that each additional basis function further 
reduces the loss function. 
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Adaptive Boosting (AdaBoost): weakness of each learner is the set of 
misclassified data points. Solution: adding increased weights to these points 
(while decreasing the weight of well-classified items) so that the next weak 
learner will pay extra attention to putting it to the right class.

Gradient Boosting: instead of adding sample weights and tuning them based 
on the success of classification, it compares the difference between the 
predicted and the real value coming from the dataset.
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Software: 
- R was used as an open-source software environment and language for 
statistical computing and graphics.

- The implementation of R's generalized boosted modeling framework closely 
follows Friedman's Gradient Boosting Machine [8].

Hardware (same as with RF models):

- Usual hardware environment (Intel Core i3 processor, 12 GB memory) was 

not suitable for GBM modelling on this size of dataset.

- Applied environment: Amazon AWS service with 48 vCPU, 168 ECU, 192 GB
memory (m5.12xlarge configuration)

- Average training times: below 5 minutes
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Resulted ROC AUC values of GBM models for each imputations 
in case of 30-day mortality as target variable:

The average for 30-day mortality is 0.847 for training set and 0.839 for 
validation set.
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Resulted ROC AUC values of GBM models for each imputations 
in case of 1-year mortality as target variable. 

This means an average of 0.828 on the training set and 0.821 on the 
validation set.
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1.) There is no significant difference 
exists between the predictive power of 
models trained on different 
imputations. 

2.) Next to our RF models, the GBM 
models also represent a stable learner: 
the standard deviation for the 30-day 
models are 0.0019 and 0.0035 
(training and validation, respectively). 
These numbers are 0.0019 and 0.0038 
for the 1-year models (training and 
validation, respectively).
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3.) Most important variables of our GBM models:

30-day mortality 1-year mortality

Cardiogenic shock Age

Age Cardiogenic shock

Level of creatinine Level of creatinine

Percutan coronary 
intervention

Percutan coronary 
intervention

Prehospitalis reanimation Hearth failure

Diagnosis Prehospitalis reanimatio
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Comparing with our former results (RF models): 

- The difference between our RF and GBM models are between 0.5% 
and 0.9%, except in the case of 1-year model on the validation 
dataset: it’s 1.7% compared to the RF results. A slight advantage of 
RF's performance power is revealed.

- There are common factors in the list of five most important fields, 
namely Age, Cardiogenic shock and Level of creatinine for both 30-
day and 1-year models. 

- There are few factors appearing only in one of the models:
- RF: Smoking and Hyperlipidaemia for both 30-day and 1-year models; 

- GBM: Percutan coronary intervention, Prehospitalis reanimatio for 30-day 
models and Prehospitalis reanimatio and  Hearth failure for 1-year 
models.
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Examples – differences between our RF and GBM models on 
validation sets:
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