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About myself

* Associate Professor at the Department of
Electronics Engineering, University of Seville,
Spain

* Research group on microsystems. 5 faculty, 6
undergraduate, graduate and PhD students

* Research lines on microfluidics, lab on chips,
microfluidics, loT



Global Challenge #14

The health of humanity Actions to Address Global Challenge 8:

continues to improve; life
expectancy at birth increased
Implement WHO Global

globally from 46 years in 1950
Vaccine Plan.

to 71.5 years in 2015.
Focus in early detection,

accurate reporting,

WHO verified more than 1,100 strategies to counter the prompt isolation, and

epidemic events over the past About 1.8 million people barriers to developing new transparent information
classes of antibiotics and and communications

five years, and antimicrobial were infected with HIV in - :
bringing them to market. infrastructure.

Create and implement
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The Millennium Project, Washington D.C.




Cost of care

Complex chronic
disease Acute care

Trauma and bum
Mpyocardial infaction
Pulmonary failure
Stroke

Surgery
Critical care

£ & QO-FE

Cost of care is exponentially increasing from people managing their health to complex
chronic disease and acute care. If acute disease are not manageable, chronic disease need

to be controlled.
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The challenge for health organizations is to make people staying on the left side.




Annual cost (in billion dollars)
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Cost of diseases

Prevalence and cost of chronic diseases
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Microsystems or MEMS

A MEMS device — Micro ElectroMechanical Systems - is a component made by
semiconductor processes with successive photolithography and etching
process steps on silicon, glass or quartz substrates.

A BioMEMS device is a MEMS device involved in life science and healthcare

applications. A specific focus is made on medical-grade products integrating
bioMEMS devices.

MEMS Spectrometer used for point of care testing: illustration of the MEMS dies, MEMS chip and
Spectrometer module. Source: Si-Ware



BioMEMS

Patient
Monitoring



Evolution of BioMEMS
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BioMEMS market forecast

BioMEMS market dynamic: 2017-2023 forecast
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Typical example: diabetes and glucose
measurement

Pl

negative feedback
Normal blood o
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Blood glucose stabilised




Diabetes

Glucose Excessive
in blood blood glucose

* Normal glucose level in blood is about 5 to 5.5
mmol-dm

* |If this level rises too high it would affect the
water content of the body.

* If glucose appears in the urine (glycosuria) water
reabsorbtion in the kidney will be reduced.

* If glucose level in the tissue fluid is high, water
will be lost from cells by osmosis.

* If levels fall below 3 mmol-dm= (hypoglycaemia)
this would lead to a loss of consciousness
(coma).

* [f level goes above 10 mmol-dm
(hyperglycaemia ) glucose will appear in the
urine, the pH of the blood would fall and this also
leads to coma.

* Both conditions are a feature of diahetes
mellitus.




Glucose monitoring

Fasting Test 70-110mg/dL > 140mg/dL
2 hours after eating <110mg/dL > 200mg/dL




Historical developments

touch, hearing, smell and taste to make a diagnosis.




Historical developments

Clinitest was introduced by Ames in 1945, and utilised a copper reagent tablet that contained all the reagents required for a urine glucose test.




Historical developments

Boehringer Mannheim introduced the Reflomat in 1974 and the Reflolux in 1984.




Historical developments
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With the 21st century came a number of different electrochemical
glucose meter systems, including the OneTouch Ultra (top right) from
Johnson & Johnson.




More recent developments

Warn like a wristwatch, the GlucoWatch
Biographer measures glucose every ten
minutes through the skin.

First noninvasive glucose monitor

Provides glucose readings every ten
minutes. Very helpful at showing patterns of
glucose levels

- . . Micro-Needle
Silicon Micro Needle consists of a

hand-held battery-powered kY

electronic monitor which holds a
cartridge loaded with 10
disposable sampling devices. Each
disposable consists of the micro-
needle and a receptacle into which
the blood sample is drawn.

Pain free testing and the amount of
blood required is 1/100t of a drop
of blood

The HypoMon® System noninvasively
detects low blood sugar in diabetes
throught skin contact. The HypoMon®
includes a battery power pack worn
on the chest and a wireless receiver
where the readings are sent to and
can be read.

Enables monitoring during the day
and night.

Alters allow the diabetic to treat
hypoglycemia at an earlier stage.

Lasette. A laser lancing device that uses a laser beam to
draw a drop of blood rather then using a steel lancet.

Virtually painless

No more finger pricking




Research and ideas




Tumor and cancer
diagnostics

CANCER DIAGNOSTICS Global Market InsightsA

MARKET

TRENDS AND INSIGHTS (2017-24)

Global
Industry
by 2024

>$156 BN

2016
$84.1 BN

ZIS\
/ *\p Reportedy, 8.8 million
g fl’ deaths worldwide were
caused by cancer in 2015

Increasing geriatric population
base will fuel the demand for
prostate cancer diagnostics

Cancer imaging held
largest market share in
2016

Imaging is widely used in
assisting radiography

and surgery along with
identification of structural
and cancer related changes

Liver-lung cancer
procured a major chunk
of the application terrain
in 2016, driven by
increasing alcohol
consumption, smoking &
changing dietary patterns

U.S. dominated the global landscape in
2016. The region is anticipated to witness

y-0-y growth of 8% over
2017-24




PET imaging

PET imaging

1. A molecule, usually glucose, is tagged with
a radioactive signal,

2. Cancer cells absorb the tagged molecules
but healthy cells do not,

3. Specialized equipment detects the radicactive
signal and creates an image showing where
the cancer cells are.




PET imaging
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Production of PET tracers

* Radioisotope production
* Radiolabeling, purification and formulation
* Quality control




Production of PET tracers

o Radioisotope Nuclear reaction
production

* Radiolabeling,
purification and
formulation

* Quality control




Production of PET tracers

o Radioisotope Chemical reaction
production

* Radiolabeling,
purification and
formulation

* Quality control




Production of PET tracers

o Radioisotope Analytical chemistry
production s

* Radiolabeling,
purification and
formulation

* Quality control




Production of PET tracers
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Production costs

* Equipment costs
— Radiosynthesizer and HPLC purification
— Dedicated synthesizer for each tracer
— Analytical equipment for QC
* Infrastructure costs
— Radiation hazard requires use of expensive hot cells
— Size/weight of hot cells requires site planning
* QOperating costs
—Maintenance and repairs for each equipment
—Personnel with specialized expertise
— Synthesizer setup and operation
— Quality control testing

—Reagents and consumables




Centralized production

PET Radiopharmacies PET Centers

["*FIFDG

: Clinical
@ centers




Distributed production

PET Radiopharmacies

Clinical
centers




Centralized vs. Distributed

Centralized Model

Making PET probes using an
automated radiochemical
synthasizar

‘__O I Imaging center
w/ PETICT
Shipping PET probes

Decentralized Model

Making PET probes on
site using automated
microfluidic platforms

Different microfluidic &
chips for different | |
probes L )




Research objective

Developing a technology that makes
decentralized PET production affordable
and efficient

Microfluidics can be a good option




Where
microfluidics
lies

Engineering

Biotechnology

Nanotechnology

Biochemistry




Microfluidics
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* A typical microfluidic channel is about the same width as a

human hair (60-80 um)



Advantages of microfluidics

* Micro scale = laminar flow

* Laminar flow allows controlled mixing

* Low thermal mass

* Efficient mass transport (speedy diffusion)

* Good (large) ratio of channel surface area: channel
volume

* Single cell and molecule manipulations
* Protection against contamination and evaporation
* Kinetics easy to study

Parallelization and high throughput




A good lab
technician or
scientist

Advantage: Highly
flexible

Disadvantage: Low
through-put

A pipette based
Sample-mixing
robot

Advantage: High-
throughput, High
reproducibility

Disadvantage: Not
very flexible

A microfluidic
device

Has the potential to
combine the best of
both worlds?



Advantages of microfluidics

* Down-sizing of reactors is typical of
organic chemistry industry

* Increased Surface-to-Volume Ratio
(SVR)

* Quicker and more efficient transfer of
reagents

* Improved energy transfer

» Efficient control of reaction by adjusting
reagent ratio and reaction time Ak

* Reduced shielding and overall size and
weight

G. Pascali et al. “Microfluidics in radiopharmaceutical industry”, Nuclear Medicine
and Biology, 2013




Microfluidics revolution
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Reduction of shielding size

During production of PET probes, shielding is needed to protect operator
from gamma radiation

__
m - If synthesizer is size of a hot cell:
11.34 ‘g"/cmg 50” x 37" x 47" rectangular interior, 3” thick
T,(Pb): 4.1mm Mass of Pb = 7600 kg

Minimum size can be
considered a “shell”
around the
synthesizer

If size of mini cell:
27" x 20" x 24" rectangular interior, 3” thick
Mass of Pb = 2400 kg

Hypothetical future microfluidic system:
2" x 2" x 2” rectangular interior, 3” thick
Mass of Pb = 90 kg (BENCHTOP!)

Thus mass of
shielding scales as R?




Micro-scale reaction

* Example: F-18

Theor. Max. Specific activity: 1710 Ci/pmol
Number of F-18 in 1 Ci 0.6 nmol
Concentration (1 mL): 0.6 uM
Human image needs ~10 mCi: 6 nM
Mouse image needs ~100 uCi: 60 pM

V-vial (1 mL)
1:1

® Radioisotope

® Precursor April 17, 2013 (START)

@ R. Michael van Dam, 2013




["*F]FDG synthesis. Macro level
@ TRACERIab F F-N . ()




['*F]FDG synthesis. Micro concept

Mannose
Triflate




['®F]FDG synthesis

Soluted "®F dissolved in water
passing through C1. NOTE C1 is not
integrated

Concentratio f@iﬁ_&ZCO?)
-ﬂ ough C1 and entering the
amber in 1

'"'“%Ives closing and evaporation of
vater-in the reactor by applying heat
roductlon o) K2 2 and MeCN

Re2e through 2
E apon}n of MeCN. Dry residue

Mannﬂse . remair E;?
SERES Radlosynthes%]'f"ndq]‘é%%”so it trilate (MT)




['®F]FDG synthesis

ez
Acid rydroI|S|§ b)’z rlljgj‘nd_%l.d.‘.l

through 4

Solution of F introducing i er

through 5 = E>.

Purific éﬂlo% through C2 (not
integrated), removing K222 and
impurities, leaving pure ["*F]FDG

Triflate '

Radiosynthesis Process

Reactor




Microsynthesis of ['°F]FDG

(€

Ilahﬂg

Low yield (38% vs 70%
standard in macro)

Small final dose

PDMS chip presented
swelling of organic
solvents

"ol —

But PDMS allowed easy
creation of valves

Lee C-C, et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics.
Science 2005



Steps of the process

Concentrated KF

1) 100°C, 30 sec
[ 2)120°C, Isec
3) 135°C, Imin

A. Concentration of
fluoride ion

B. Evaporation of water
C. Fluorination reaction

D. Hydrolisis reaction



Coin-shaped reactor

valve elised
~2mL
. |, ["*FIfluoride / — _
| [*0JH,0
SN N

99.5% Efficiency
(n=1)

% Trapping
o ['0]H,0

luid channel récovery
lon exchange columns are n—_—
not integrated Eluent

92.7% Efficiency
(n=1)

Release

To reactor ~808 mCi

PDMS had to be coated and still some ®F is lost
Yield of 96% in 14min (vs macro 75% in 35-45min)



Commercial reactors

-

Advion Nanotek Veenstra / Future Chemistry D-500
4 parallel mixers

Volume hundreds of uL

ok, Scintomics u-ICR




Radiochemistry-on-chip

E:' Module 1 Module 2 Module 3 Module 4
(i} "OF 1ag- | liquid N, gas
() K00, KKy 9 det  miet 2 NaCH
|. | X ! |
i=='=l
==
[—
-——-=ll
ot washa oullet audtlat

Arima et al. 2013. Lab on a Chip. DOI: 10.1039/C3LC00055A



Microfluidic chip

Microfluidic chip for complete ["8F]PESIN synthesis with
valves, reactors, QMA and SPE resins integrated on-chip.




Microbatch reactor

- Chip

8 Valve Actuator

— Chip to world interface

Bejot R, et al. Batch-mode microfluidic radiosynthesis of N-succinimidyl-4-[18F]fluorobenzoate for
protein labelling. J Label Compd Radiopharm 201



MicroRad project

Public Research Project, Andalusian Government,
Spain, 2014-2018

Aim: developing a complete smart radiosynthesis
system

Disposable chips, made of unexpensive material
Integrated cartridges

Fast, efficient gas extraction

Smart monitoring by use of integrated sensors



MicroRad
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Cartridge integration

RESULTS FOR DIFFERENT SAMPLE VOLUMES

" Volume (mL) || Retention (%) Elution (%)

0.1 100 88
0.1 100 98
0.1 100 98
2 98 89
2 98 95
2 98 79

To our knowledge, the first integrated
ion-exchange cartridge in PDMS lab-

on-chip for PET
\ D | /
B. Salvador, A. Luque, et al. “Disposable PDMS ~ B
Chip With Integrated [18F]Fluoride Pre-
Concentration Cartridge for Radiopharmaceuticals”, ~ o
IEEE Journal of Microelectromechanical Systems,

2017




Use of PDMS

* PDMS is a low-cost, transparent, biocompatible polymer, heavily used for rapid
prototyping and disposable devices

* |t presents many other advantages for microfluidics, such as flexibility and
porosity

* Some authors report that it interacts with [18F], rendering it almost unusable
for radiopharmacy

* In our experience, interaction is negligible when parameters are correctly

configured
Second
Loading Activity Elution Residual chip Residual
PDMS ['*F]F- after Water activity at elution Radioactivity
Reactor Activity evaporation per injection chip Residual at chip
(MBq) (MBq) (MBq) after elution activity (%)
(MBq) (MBq)
1 8.62 8.39 7.04 0.10 - 1.16
2 12.58 11.80 10.86 0.21 - 1.66
3 28.12 27.98 24.07 1.09 0.3 1.06
4 51.80 48.84 43.35 1.81 0.5 0.96
5 66.60 63.15 54.21 1.91 0.5 0.75
6 240.05 231.77 220.27 0.78 - 0.32
7 802.10 774.26 716.49 19.24 2.1 026
8 925.30 856.62 756.74 7.50 - 0.81
9 1257.01 1195.85 1017.59 7.48 - 0.59
10 2544.80 2526.67 2292.26 7.88 - 0.30

L. F. Maza, A. Luque, et al. “Does PDMS really interact with [18F]fluoride? Applications in
microfluidic reactors for 18F-radiopharmaceuticals”. Micro-nanofluidics, In press




Advantages of PDMS

\ -

Valve PDMS Valve

Spet membrane closed
; .\\ .

Fluid Reactor Fluid

input output

Heater

Extraction
grid

——

!

Temperature | | Reaction PDMS
sensor chamber | | suction cup




Integrated sensing and contro

On a disposable chip it is difficult to integrate ]
flow sensors and to understand how is the
reaction evolving.

Silicon photomultiplier sensors are used to
monitor the sample and reagents flow.

B. Salvador, A. Luque, et al. “Monitoring of
Microfluidics Systems for PETRadiopharmaceutical
Synthesis Using Integrated Silicon
Photomultipliers”, IEEE Sensors, 2019




16 sensors are enough to monitor
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esults. Synthesis of FMISO

mAU |
@
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o
180,0 4
160,0
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_ VAW
I T T T T T T T T T
0,0 2,0 4,0 8.0 8,0 10,0 12,0 14,0 16,0 18,0 min
Peak number Retention time Area Arearatio Resolution Height Concentration Component name
min (mAU) x min % mAU  ppm
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=
24000 - H
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800,0 1 |7}
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min (mV)x min % mV ppm
3.192 1818.3236 96.39 12.288 2421.795 invalid

2 8.270 [68.1043 1 361 invalid 405641  invalid FMISO




Conclusions

* Microfluidics can be applied to PET probe
generation

* Hot research topic which is expected to
provide new developments

* Niche in the intersection between chemistry
and electronic technology




Organs on a chip




Organs on a chip
» Human Body — Drug Response

Human Surrogate
Pharmacokinetics (PK)

Concentration

Time

Pharmacodynamics (PD)

PBPK-PD model
(in silico)

2
£
=
L
[
=
<

o
£
I I_‘ Concentration (log)
5 g | PK/PD
i e NN
+  Absorption g £ & B 1&3:. ;Izr
- Distribution £¢g - 7 Speen i
+  Metabolism v i
*  Excretion 3 Time

Wang, Y. |., Carmona, C., Hickman, J. J., & Shuler, M. L. (2018). Multiorgan Microphysiological
Systems for Drug Development: Strategies, Advances, and Challenges. Advanced healthcare
materials, 7(2)




Organs on a chip

A. Static microscale platform C. Pump-driven recirculating platform

Diffusion-driven, through connecting medium Closed-loop, serial and/or parallel connection

Reservoirl  Pumpl

€} Micropattern d) Wells in a well
Overlying medium
: D. Pumpless recirculating platform
0, 0, 0, Gravity-driven, serial and/or parallel connection

B. Single-pass microfluidic platform
Open-loop, unidirectional and serial connection

= Route 2 5
emmmmmm e A F & e -, Organ module network
! I
! : B flay, rocking flow R
i | : . R, motion g
| !




MEMS for cultivating cells

Aim is to use MEMS
techniques to create
living cell cultures,
tissues, or organs

Photolithographically patterned liver cells




Muscle on a chip

Gel filling port

Microfluidic layer.

Pillar layer. |

Coverslip

Uzel SG, Platt RJ, Subramanian V, Pearl TM, Rowlands CJ, Chan V, Boyer LA, So PT,
Kamm RD. Sci Adv. 2016;2:€1501429.




Lung on a chip

Dongeun Huh et al., A Human Disease Model of Drug Toxicity—Induced Pulmonary Edema in a
Lung-on-a-Chip Microdevice, Science Translational Medicine, 07 Nov 2012 : 159ra147




Labcell: Neuron culture on a chip

Microfluidica

Electronica




MEAs embedded in PDMS

Standard PCB

g m
—

Auxiliary PCB
b)

Wire bonding

PDMS

Glass

)

M. Cabello et al. Gold microelectrodes array embedded in PDMS for electrical
stimulation and signal detection, Sensors and Actuators B 257 (2018) 954-962




Integration of electronics and fluidics

Controlled conditions of temperature, flow
rate, and pH

£ w

Effective

working areas

a) l b) Effective

working areas

3D
structure




Losses Ratic
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Experimental results
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Experimental results. Mice retina

- Rhodopsin
Il DAPI

e)

Immunohistological study: (a) wild-type mice retina after its extraction; (b) wild-type mice retina
after seven days of culture in a cell culture plate; (c) albino mice retina after seven days of
culture in a cell culture plate; (d) wild-type mice retina after seven days of culture inside the
MEA; (e) albino mice retina after seven days of culture inside the MEA.



Proposed final system

Buffer reservoir

STOCHASTIC
NEURAL
NETWORK

Recording - | *”y/j

Optical
transducer




Conclusions

* |t is possible to build simulators of tissues or
organs and test drugs on them, using
techniques developed for MEMS sensors and
actuators

* Next steps:

— Process signals and communicate with the organs-
on-chip

- Integrate them in half-bio / half-electronics systems

— Customize to simulate conditions of a specific
person




Thank you!
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