# Electrification of the road transport sectorThe prime option to cope with climate targets?

Netze BW Dr. Karoly Santa August 2019

August 2017

X Netze BW

Ein Unternehmen der EnBW

Agenda



#### **1 Introduction**

- 1. A general take on European climate targets and their fulfillment
- 2. The transport sector and its impacts on the environment

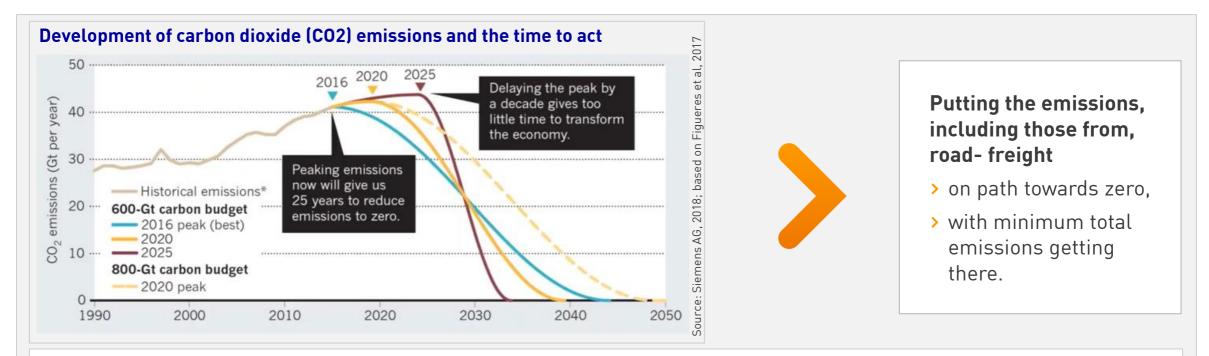
#### 2 Status Quo of road transport electrification – general overview on current developments

- 1. State of current technology development
- 2. Limitations and potential barriers for wide-scale implementation

#### 3 Electrification of road transport systems – developments and tendencies in the application of ERS

- 1. ERS-Technology development and its utilization
- 2. Status of current implementation rates

#### 4 The energy sector and the interplay with electric vehicles – impacts regarding grid operation


- 1. General impacts of electric vehicle charging for the grid operation
- 2. Implications of dynamic vehicle charging within road-freight transport
- 3. How the additional electricity demand can be covered

#### 5 Summary & Discussion – a take on current challenges and potential developments

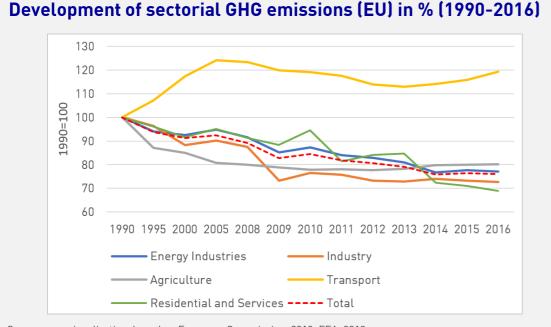
### 1 Introduction





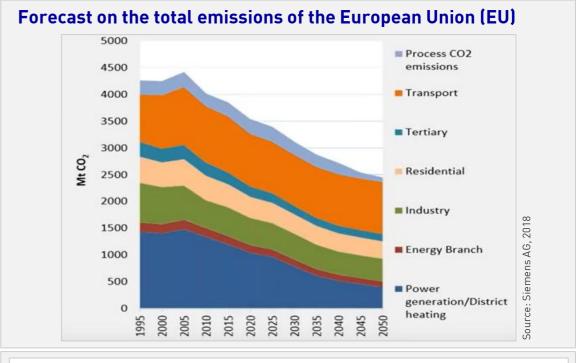


- > Action on climate change **urgently needs to be performed** in order to prevent disruptive developments
- > **Electrified mobility** has been given the main priority in countries worldwide
- > The transformation from conventional to more/full electric mobility contains **structural questions**
- > Current roadmaps are portraying **different decarbonization approaches** and different ways of technology applications
- > Electrification of the transport sector requires a **direct involvement of the energy sector**


# 1.1 A general take on European climate targets and their fulfillment European Climate Strategies for 2020/2030/2050






# 1.2 The transport sector and its impacts on the environment Emissions by sector (EU) and forecasts for sectorial decarbonization

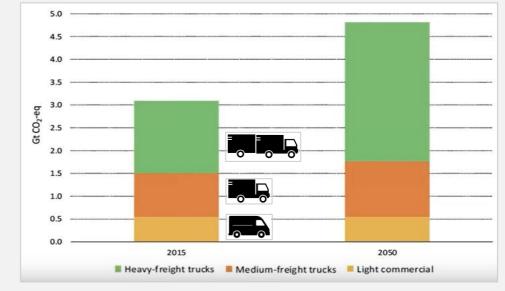




Source: own visualization, based on European Commission, 2018; EEA, 2019

- > GHG emissions related to transport have been increased by around 20% (compared to 1990)
- > Road transport is accounting for more than 22% of the anthropogenic carbon dioxide (CO2)-emissions




- > The energy sector is set to be transformed by 2050
- > Transport sector is posing the biggest challenge with regards to decarbonization, with long-distance hauling being specifically important for climate protection

# 1.2 The transport sector and its impacts on the environment GHG emissions by transport type (EU) and global emission tendencies





Development of emissions (in C02-eq) in 2015 and 2050 (globally)



- More than 73% of GHG emissions related to the transport sector can be allocated to road transport
- > Passenger cars are contributing over 44% to transport sector emissions, heavy-duty vehicles for ca. 19%

Source: Siemens AG, 2018, but with own modifications

- > Current trend for road-freight emissions highlight the urgency for decarbonizing solutions
- Global heavy road-freight is expected to emit 3 Gt of C02-eq\* by 2050

\*Gigatonnes of C02-equivalent

Source: own visualization, based on European Environment Agency, 2019


### 2 Status Quo of road transport electrification

#### **General overview on current developments**



> Transport in its core will continue to rely on roads (despite the increasing use of other methods e.g. rail and maritime)





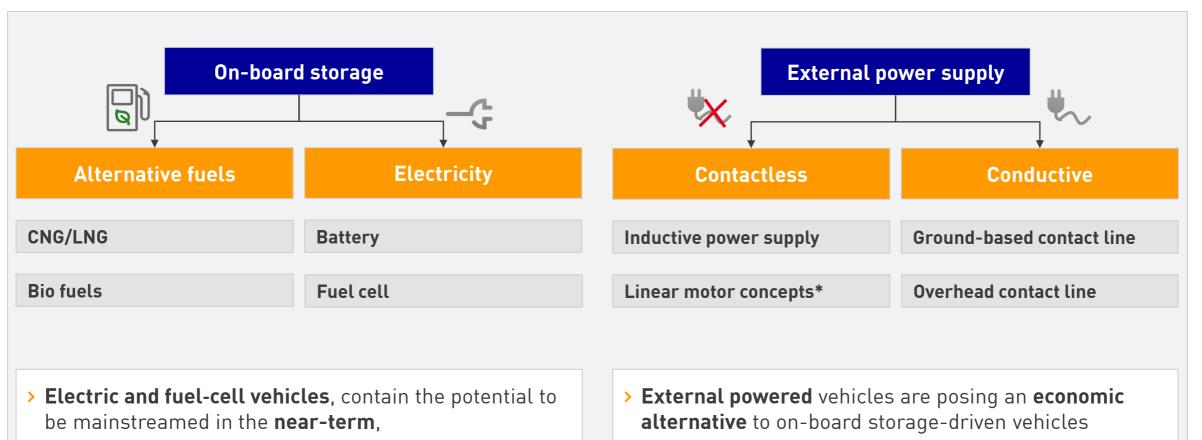
> This implicates the need for alternative powertrains

- Advanced Internal Combustion Engines (ICE) and disruptive thermal propulsion systems and fuels (Power to liquids or gas),
- > Novel hybrid systems with next generation lightweight ICE and simplified powertrain components
- Electric Road Systems (ERS), using catenary trucks might offer additional potential to decarbonize the transport sector
  - > The necessary equipment is currently under development and has been tested in a small number of sites in Sweden, Germany, and the USA

### 2.1 State of current technology development



#### Potential for energy efficiency in the transport sector by transport type


|                                | Technological optimization                                                                                | Governance<br>instruments                                                                                                  |                                              | Technological optimization                                                                                                    | Governance<br>instruments                                                             |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| MOTORCYCLES                    | > Electrification (battery)                                                                               | <ul> <li>Fleet-modernizations<br/>(Bonus-malus system)</li> <li>Demand-driven system</li> </ul>                            | RAILWAYS<br>(EXCLUDING<br>ELECTRIC RAILWAYS) | <ul> <li>&gt; Electrification of non-<br/>electrified infrastructure</li> <li>&gt; Efficiency in drive-trains</li> </ul>      | <ul> <li>Common electrification<br/>policies (supranational)</li> </ul>               |
| PASSENGER<br>CARS              | <ul> <li>ICE efficiency (alternative fuels)</li> <li>Electrification (battery)</li> </ul>                 | <ul> <li>&gt; Fleet-modernizations</li> <li>&gt; Bonus-malus system</li> <li>&gt; Emission Trading-<br/>Schemes</li> </ul> | DOMESTIC<br>NAVIGATION                       | <ul> <li>Structural improvements<br/>(hull, propulsion)</li> <li>Alternative fuels and<br/>partial electrification</li> </ul> | <ul> <li>Tighter emission controls<br/>(i.e. CO2, NOx, SOx)</li> </ul>                |
|                                | <ul> <li>ICE efficiency (alternative fuels)</li> <li>Electrification (battery)</li> </ul>                 | <ul> <li>Incentivation of<br/>alternative technologies<br/>(e.g. CO2-taxation)</li> <li>Fleet-modernization</li> </ul>     |                                              | <ul> <li>Structural improvements<br/>(hull, propulsion)</li> <li>Alternative fuels and<br/>partial electrification</li> </ul> | <ul> <li>Tighter emission controls<br/>(i.e. CO2, NOx, SOx)</li> </ul>                |
| HEAVY DUTY<br>VEHICLES & BUSES | <ul> <li>ICE efficiency (alternative fuels)</li> <li>Electrification (battery &amp; centenary)</li> </ul> | <ul> <li>Incentivation of<br/>alternative technologies<br/>(ERS)</li> <li>C02-taxation</li> </ul>                          | INTERNATIONAL<br>AVIATION                    | <ul> <li>ICE efficiency (alternative fuels)</li> <li>Electrification (battery)</li> </ul>                                     | <ul> <li>Adoption of CO2 emission<br/>standards</li> <li>Carbon offsetting</li> </ul> |

> There is a high emphasis on general "electrification", "alternative fuels", as well as "batteries" as the main methods of energy supply

> Comprehensive policies are required to resolve issues that technology cannot solve

#### 2.1 State of current technology development Alternative concepts for climate-friendly transport





- > However they're prone to the issues of **size and weight** of the storage and general technology development
- > However they underly the necessity of **additional** infrastructure as well as the appropriate vehicles

#### 2.1 State of current technology development Areas of application of alternative drive concepts within heavy-freight transport

XX Netze BW

**Overhead Hybrid Battery Electric Fuell Cell Electric** Truck (O-HEV) Truck (BEV) Vehicle (F-CEV) Source: Scania AG (left, right); Volvo (middle) > When high shares of utilization > Utilization within **long-distance** Suited for urban and regional are covered on **electric stretches** distribution traffic **Point-to-Point commuting** with > Within corridors where > Locations which require **less** short up- and downstream runs appropriate chargingemissions infrastructure is established

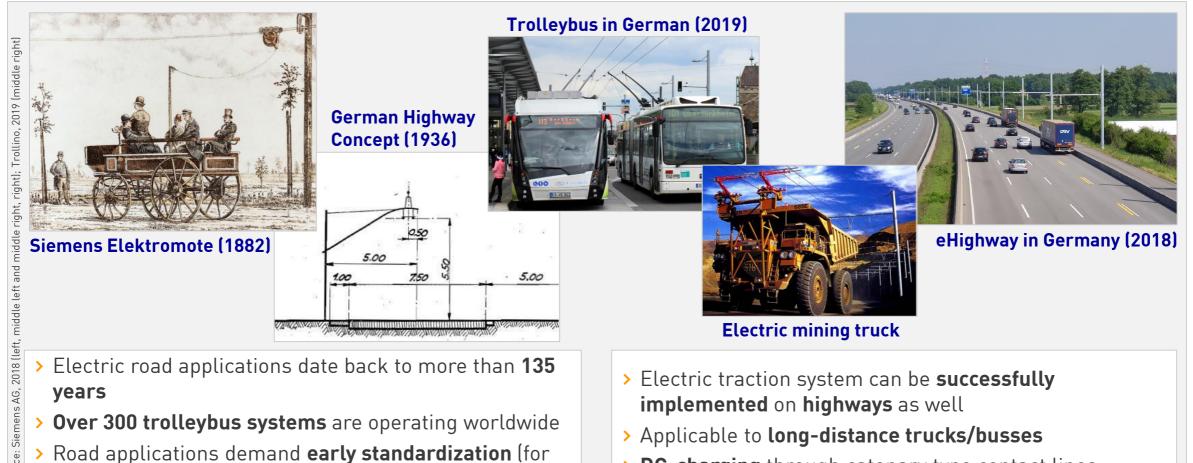
Easing of **local emissions** is required

> Areas where charginginfrastructure is well established



Complementary option to BEV

#### 2.2 Limitations and potential barriers for wide-scale implementation Current barriers (near-term) for electrification by sector (Light/Heavy Road, Rail)

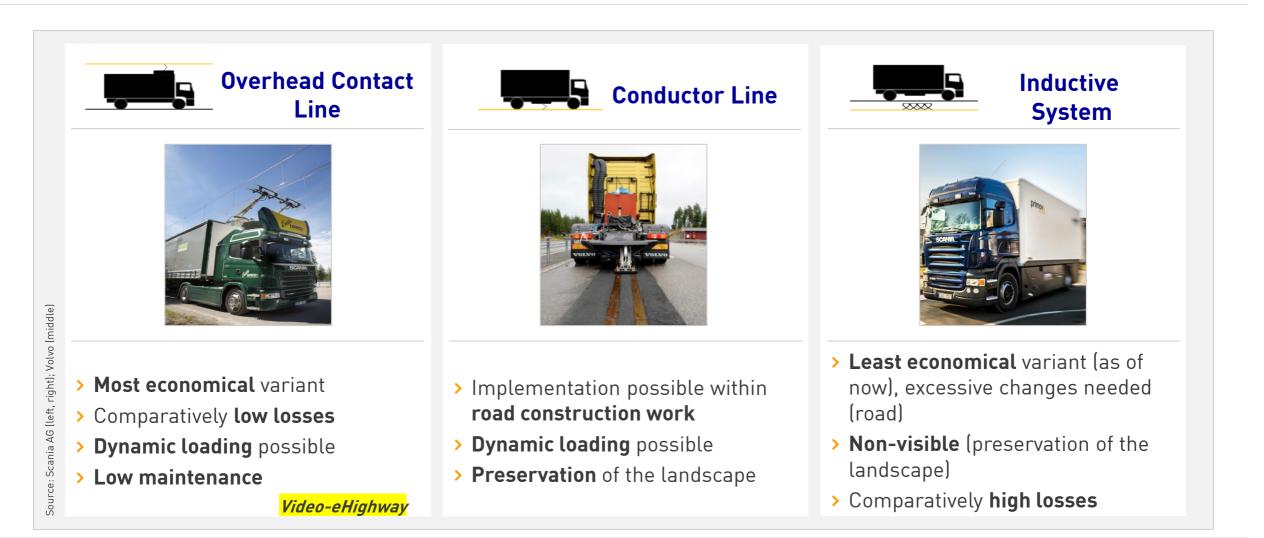



| Subsector  | Cost barriers                                                                                                                                                                                                            | Infrastructure barriers                                                                                                                                                  | Other barriers                                                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Light Road | <ul> <li>&gt; Total cost of ownership nearing parity<br/>(depending on pricing of conventional<br/>fuels)</li> <li>&gt; Battery cost (depending on ICE)</li> </ul>                                                       | <ul> <li>Development of charging<br/>infrastructure, particularly within dense<br/>urban environments</li> <li>Fast-charging to support high-<br/>utilization</li> </ul> | <ul> <li>Range limitations due to<br/>(current) technological<br/>restrictions</li> </ul>                                                                       |
| Heavy Road | <ul> <li>Total cost of ownership nearing parity<br/>(short-haul, high utilization fleets),<br/>relative to conventional fuels</li> <li>High capital costs highly relative to<br/>conventional fuel options</li> </ul>    | <ul> <li>Fast-charging needed to support high-<br/>utilization fleets</li> </ul>                                                                                         | <ul> <li>Range limited by weight, size<br/>and cost of the battery (heavy<br/>vehicles)</li> <li>Interventions into the<br/>environment (Catenaries)</li> </ul> |
| Rail       | <ul> <li>Limitation of electric rail infrastructure<br/>high modal share and energy density) par<br/>conventional fuels)</li> <li>Lack of investments to expand mode sha<br/>other connected infrastructures)</li> </ul> | <ul> <li>Modal shift depending on the<br/>utilization of other transport<br/>methods</li> </ul>                                                                          |                                                                                                                                                                 |

### 3 Electrification of road transport systems

Developments and tendencies in the technological application of Electric Road Systems (ERS)






> **DC-charging** through catenary type contact lines

vehicles)

#### 3.1 ERS-Technology development and its utilization ERS technologies within the heavy-freight transport with external power supply

🔆 Netze BW



# 3.1 ERS-Technology development and its utilization Areas of application of ERS concepts within freight transport



#### Shuttle transport



- Solution for short or medium distances (<50km) which require a high frequency
- Benefits of lower fuel
   consumption and longer lifetime
- > **Reduction of local emission**, e.g. air and noise pollution

#### **Electrified mine transport**

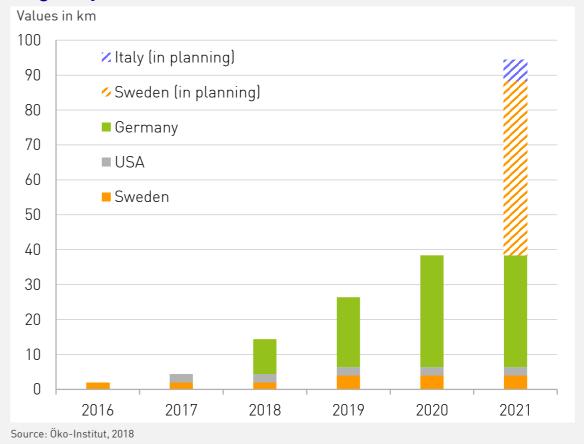


- Interconnection of areas e.g. mines and storages to enhance the transportation capabilities
- Improvement of operational aspects, like sustainability and economic factors

#### **Electrified Long-Haul traffic**



- Economical feasible alternative to conventional road-freight transport
- > Reduction of CO2 emissions to cope with climate targets
- > Synergy effects with existing railway systems


# 3.1 ERS-Technology development and its utilization **Projects and initiatives (current developments)**



## Since 2016, at least one new project has been added every year

- > 2010-2016: Research Projects in Germany (ENUBA I/II, ELANO)
- > 2016: First electrified road section in Sweden
- > 2017: Commissioning of a test track (shuttle between port and rail connection) in California
- > 2018: Completion of the first electrified motorway section in Hesse, Germany (A5)
- > 2019/2020: Planned commissioning of two more test tracks in Germany (Schleswig-Holstein and Baden-Württemberg
- > 2021: Planned start-up of a first electrified motorway section in Italy as well as other electrified long-distance sections in Sweden

### Test tracks with overhead contact line on public highways worldwide



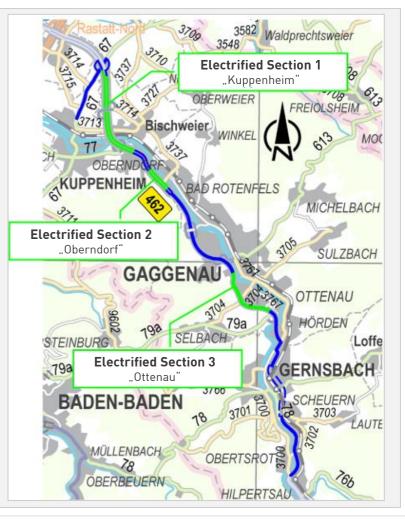
#### 3.1 ERS-Technology development and its utilization Project "eWayBW" – Objectives, Characteristics and unique features (1/2)





- Track with the highest capacity utilization with focus on the energy industry
- Complementary to pilot projects in Hessen and Schleswig-Holstein

#### The main objective


- > **Open investigation** of the overhead line infrastructure,
- > Utilization of **catenary trucks in shuttle mode** between the paper mill and a warehouse

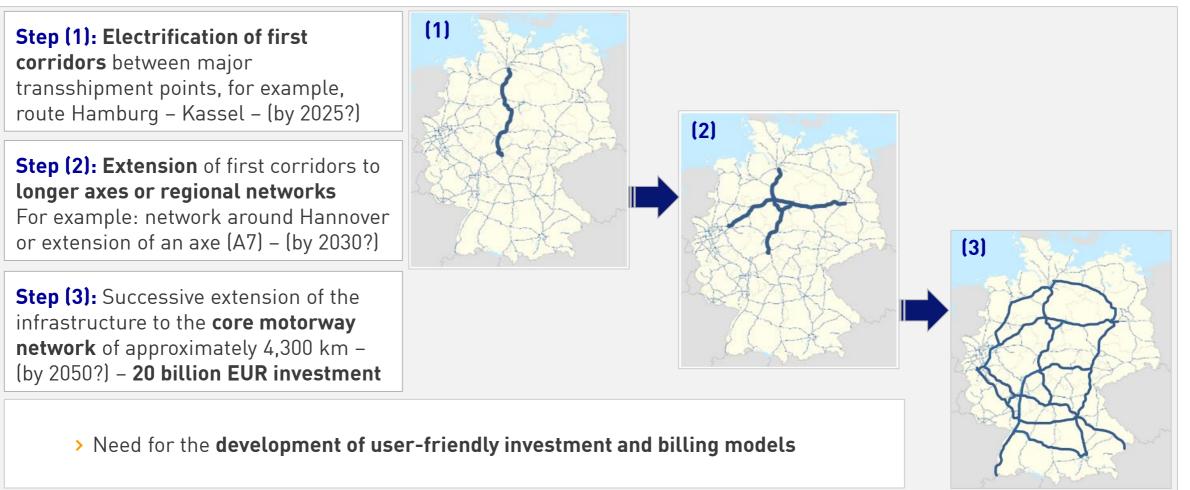
#### **Characteristics of the route**

- > Public test track of 18.3 km with
- Electrification areas of **6 km** (in both directions),
- annual mileage of < 140,000 km

#### (unique) features

- > Volume of transport: > 500.000 t/a
- > 64 circulations every day
- > Yearly perfomance/Truck > 140.000 km
- > Contact wire performance > 250.000 km
- > Parallel railway line (synergy effects)






### Focus points of the "eWayBW"-project:

- > Energy sector with focus on the energy and transport system transition ("Energie- und Verkehrswende")
- Project pursues the aim to be completely CO2-neutral
   Integration of renewable energy systems
- > Impact of "moveable" and "variable loads" within the energy system
  - > Stability of the system with high traffic/transport volumes
  - Implications of feeding energy regained through recuperation to the grid (Vehicle-2-Grid)
- > Testing of the feasibility, as well as the implications of Vehicle-2-Vehicle charging
  - > Option to charge passenger vehicles via catenary trucks
- > Testing the environment for partial and complete autonomous driving
- > Prospective for the **development for alternative drive-technologies**
- > Governmental Cooperation between Hungary and Baden-Württemberg (Ministries, University of Obuda)

#### 3.2 Status of current implementation rates Potential roadmap for the implementation of ERS (Germany)



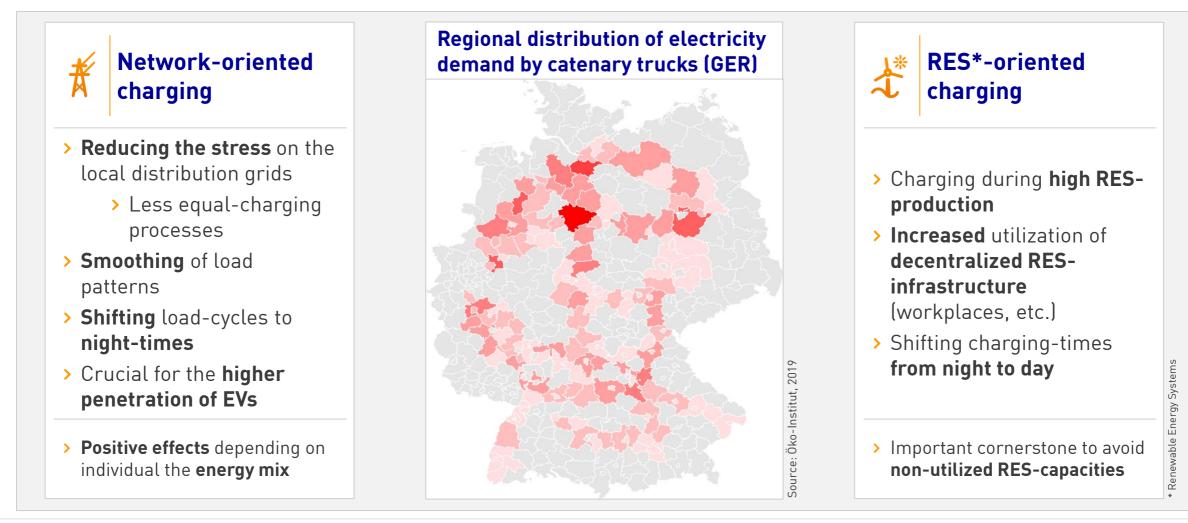


Source: StratON, 2018 (middle, left, right)



> Up to 2030 additional overall demand for electric vehicles is estimated to be limited in Europe and therefore will not significantly influence the electricity system

- > But in the long-term, when electric vehicles reach greater market shares,
- > the required electricity will **significantly impact power systems** in Europe



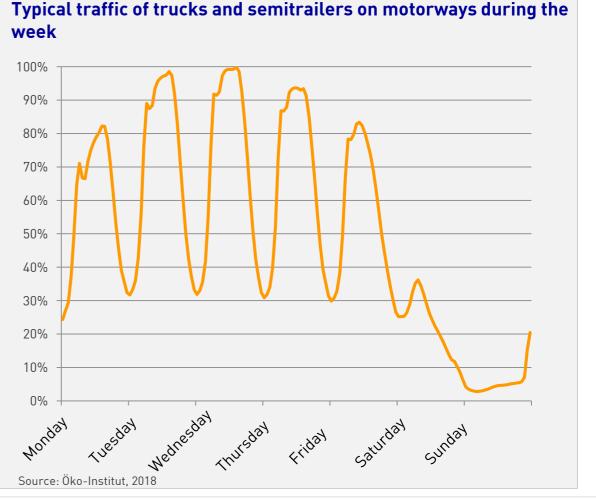

> Electricity systems and the combination of conventional and renewable generation plants differ greatly within Europe

> Impact of electric vehicles depends strongly on the degree of individual electric mobility in Europe

# 4.1 General impacts of electric vehicle charging for the grid operation Different procedures in charging of electric vehicles and their effects






#### "Electrification of road transport: The prime option to cope with climate targets?" • August 2019 • Dr. Karoly Santa

### 4.2 Implications of dynamic vehicle charging within road-freight transport

#### Load distribution during the week

- The extra load of catenary trucks is the highest during the day and is reduced by around 30% at night
- > On weekdays between 7am and 6pm most trucks and semitrailers are operating. In this period, electricity demand from catenary trucks would be at a high level
- In the night hours between 10pm and 5am the traffic volume of trucks and semi-trailers is typically reduced to 30-40% of the maximum demand.
- > On weekends the demand is significantly below average

Catenary hybrid trucks have a high daily load distribution with the lowest demand on the weekend.





4.3 How the additional electricity demand can be covered



> Additional electricity demand needs to be met by additional power generation

- > Requirements for the **smart charging** of vehicles
- > Integration of RES into the existing grid infrastructure



- > At the **national level**, the demand for charging power accounts for **only a small proportion of the total electricity demand**,
- > at the regional level, the impact of catenary trucks on the accumulated demand may be significantly greater
- > Spatial distribution of residual loads strongly depends on the individual RES expansion strategy

#### > Transforming the transport sector is key to fulfill climate-related obligations

\* > Electrification of passenger cars **alone is not sufficient** 

Possible scenarios containing different combinations of BEV, O-BEV, O-HEV\* \*BEV: Battery Electric Vehicle, O-BEV: Overheadline Battery Electric Vehicle, O-HEV: Overheadline Hybrid Electric Vehicle

- > Electrification of the road transport underlies different and variable factors
  - > Technological, structural and regulative aspects heavily influence the electrification process
  - > Social acceptance and the associated effects on consumer goods
    - > Requirement towards comprehensive policies and national transport strategies
- > Economic competitiveness of electrifying concepts are currently not given
  - > Transport sector is still heavily reliant on conventional fuels
  - > Optimal degree of electrification (cost efficiency vs. security of supply)
  - > High capital costs and development of charging infrastructure are identified as the key barriers for electrification
    - > Need for the development of user-friendly billing models
    - > Separation between upstream and downstream infrastructure (regulated and non-regulated area)





#### 5 Summary & Discussion – challenges and potential developments (2/2) Challenges related to the electrification of freight-transport through catenery trucks



- > No alternative drive option has yet been able to assert itself within road-freight transport
  - > Battery electric trucks in **regional/distribution** traffic with **advantages**
  - > In long-distance transport, given the higher requirements, no clear technology preference
- > Catenary trucks represent a cornerstone, but lack the potential to solve issues alone
  - > Electrifying the transport sector should be seen as complementary to the existing rail transport system





- > The short-term CO2 reduction contribution of catenary trucks is relatively low, but can be much higher in the long-term
- > With the increasing decarbonization of electricity generation, electric trucks will already reach a significant climate advantage by 2030
  - > Currently still low CO2 advantage compared to diesel trucks, but by 2030 already 40% lower total emissions

### We are looking forward to welcoming you!



Dr. Karoly Santa Netze BW GmbH Schelmenwasenstraße 15 D-70567 Stuttgart k.santa@netze-bw.de

More information is available on our homepage: <u>www.netze-bw.de</u> and in the social web.

