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Abstract

In the quest for progressively more realistic mathematical representations of
biomedical processes, fractional differential equations have the potential of
summarizing, with an order that can in principle be estimated from data,
different (presumably integer-order) interacting controls or influences upon
the observed variable of interest. This is the case, for example, of
transcutaneously measured glycemia, where besides glycemia itself (possibly
decaying by first-order elimination) also unobserved factors (insulinemia,
other hormones) may exert higher order effects. The problem is complicated
by the fact that random events (hormonal oscillations and emotions, besides
food intake or exercise) may affect glycemia as well, leading to the eventual
formalization of the problem as a Fractional Stochastic Differential Equation.
We discuss the rationale and the techniques for progressing from ODE’s to
more complex deterministic and stochastic models. We use a simple FSDE
model of glycemic control to exemplify a possible approach to model
parameter estimation in this context: advances both in model structure and in
parameter estimation techniques are the topic of future research at Obuda
University. Once satisfactory modeling and estimation methods are obtained,
their incorporation in devices or add-on apps for the analysis of Continuous
Glucose Measurement tracings would greatly improve patient-specific
tailoring of therapy, with better glycemia prediction and reduction of the
frequency of occurrence of dangerous hypoglycemic episodes in the fragile,
often juvenile Type 1 Diabetes Mellitus population.
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Physiological glucose control 1/7
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Physiological glucose control 2/7
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Physiological glucose control 3/7
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Physiological glucose control 4/7
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Physiological glucose control 5/7
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Physiological glucose control 6/7
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Physiological glucose control 7/7
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Diabetes Prevalence (ages 20-79)

Hungary: 661,400 people with Diabetes in 2021 (7 % of population) + maybe
110,300 undiagnosed cases.
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Natural history of T2DM
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Multi-scale modeling in Biomedicine 1/9
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Multi-scale modeling in Biomedicine 2/9
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Multi-scale modeling in Biomedicine 4/9
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Multi-scale modeling in Biomedicine 9/9
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What have we done so far?

how the pancreas works (organ/organism-level)

efficient estimation of insulin sensitivity from perturbation experiments
(organism-level)

natural history of T2DM (organism-level)

population evolution of insulin sensitivity (organism/community-level)
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What are we going to do next?

T2DM evolves to insulin dependence

T1DM evolves to insulin resistance

NEED: identify patient current condition from real-life data
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Continuous Glucose Monitoring (CGM)

A device records glucose concentration in the dermal tissue (in the deep
layers of the skin). In diabetic patients recorded glucose concentrations drive
an insulin pump through some automatic control algorithm.

The monitor usually stores the data every 5 minutes. Glucose concentrations
measured by the device refer to the dermis, but they reflect with good
approximation blood glucose concentrations (glycemia).
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CGM and cellphone
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CGM and insulin pump
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Implantable CGM
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CGM profile: non-diabetic pregnant woman
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CGM profile: T1DM
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Our goal

Forecasting? not meaningful

Control? robust

hence: diagnostics! (post-hoc)
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Methodology
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Standard approach:

Ordinary (nonlinear) Differential Equations
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Glucose Metabolism 1a/10
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Glucose Metabolism 1b/10

dG
dt

= kG − kEGG, G(t0) = G0

( 2 free parameters )
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Glucose Metabolism 2a/10
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Glucose Metabolism 2b/10

dG
dt

= kG − kEGG − kMGG + kGMM, G(t0) = G0

dM
dt

= kMGG − kGMM, M(t0) = M0 = G0

( 3 free parameters )
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Glucose Metabolism 3a/10
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Glucose Metabolism 3b/10

dG
dt

= kG − kEGG − kMGG + kGMM, G(t0) = G0

dM
dt

= kMGG − kGMM, M(t0) = M0 = G0

dI
dt

= kI − kEI I, I(t0) = I0

( 5 free parameters )
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Glucose Metabolism 4a/10
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Glucose Metabolism 4b/10

dG
dt

= kG(I)− kEGG − kMGG + kGMM − kEGI IG, G(t0) = G0

dM
dt

= kMGG − kGMM, M(t0) = M0 = G0

dI
dt

= kI − kEI I + kIGG, I(t0) = I0

( ⩾ 7 free parameters )
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Glucose Metabolism 5a/10
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Glucose Metabolism 5b/10

dG
dt

= kG(I)− kEGG − kMGG + kGMM − kEGI IG, G(t0) = G0

dM
dt

= kMGG − kGMM, M(t0) = M0 = G0

dI
dt

= kI − kEI I + kIGG, I(t0) = I0

dL
dt

= kL − kELL, L(t0) = L0

( ⩾ 9 free parameters )
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Glucose Metabolism 6a/10

44 / 85



Glucose Metabolism 6b/10

dG
dt

= kG(I)− kEGG − kMGG + kGMM − kEGI IG + kGLL, G(t0) = G0

dM
dt

= kMGG − kGMM, M(t0) = M0 = G0

dI
dt

= kI − kEI I + kIGG, I(t0) = I0

dL
dt

= kL(G)− kELL, L(t0) = L0

( ⩾ 11 free parameters )
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Glucose Metabolism 7a/10
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Glucose Metabolism 7b/10

dG
dt

= kG(I)− kEGG − kMGG + kGMM − kEGI IG + kGLL, G(t0) = G0

dM
dt

= kMGG − kGMM, M(t0) = M0 = G0

dI
dt

= kI − kEI I + kIGG, I(t0) = I0

dL
dt

= kL(G)− kELL, L(t0) = L0

dU
dt

=

nU∑
m=1

Um δ(t − tm) − kEUU, U(t0) = U0

( ⩾ 15 free parameters )

47 / 85



Glucose Metabolism 8a/10
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Glucose Metabolism 8b/10

dG
dt

= kG(I)− kEGG − kMGG + kGMM − kEGI IG + kGLL + kGUU(t − τ), G(t0) = G0

dM
dt

= kMGG − kGMM, M(t0) = M0 = G0

dI
dt

= kI − kEI I + kIGG, I(t0) = I0

dL
dt

= kL(G)− kELL, L(t0) = L0

dU
dt

=

nU∑
m=1

Um δ(t − tm) − kEUU, U(t0) = U0

( ⩾ 17 free parameters )
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Glucose Metabolism 9a/10
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Glucose Metabolism 9b/10

dG
dt

= kG(I)− kEGG − kMGG + kGMM − kEGI IG + kGLL + kGUU(t − τ), G(t0) = G0

dM
dt

= kMGG − kGMM, M(t0) = M0 = G0

dI
dt

= kI − kEI I + kIGG + kIGNNG, I(t0) = I0

dL
dt

= kL(G)− kELL, L(t0) = L0

dU
dt

=

nU∑
m=1

Um δ(t − tm) − kEUU, U(t0) = U0

dN
dt

= kNUU − kENN, N(t0) = N0

( ⩾ 20 free parameters )
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Glucose Metabolism 10/10
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... does not work!

MANY parameters to be estimated from

the tracing of a SINGLE variable

need some synthetic approach...
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Order of control 1/7
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Order of control 2/7
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Order of control 3/7
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Order of control 4/7
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Order of control 5/7
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Order of control 6/7
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Order of control 7/7
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Fractional differential equations?

Grünwald-Letnikov

Riemann-Liouville

Caputo
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Fractional Differential Equations of the Caputo type ...

In the case of deterministic fractional differential equations we might use the
Caputo definition:

C
t0 Dα

t y(t) =
1

Γ(m − α)

∫ t

t0

(t − u)m−α−1y (m)(u)du,

with

y (0) = y(t), y (k) =
dk y(t)

dtk , k = 1, 2, . . . ,m − 1,

where m := ⌈α⌉ ∈ Z, m ∈ Z : 0 < (m − 1) < α < m.
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Rome Italy CGM experimental set-up

subject is at rest and meals have not been eaten for a relatively long
time (e.g. during the night)

near-constant, zero-order glucose production occurs in the liver

Glucose elimination from the bloodstream may be proportional to
glycemia, with an apparently first-order, linear elimination rate

Insulin exerts a second-order effect

other hormonal influences (cortisol, growth-hormone, counter-regulatory
hormones like adrenalin, noradrenalin and glucagon) may exert
third-order effects

Furthermore: random (system) noise
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... we tried, does not work very well :(

Sakulrang, Moore, Sungnul, ADG - A fractional differential equation
model for continuous glucose monitoring data, Advances in Difference
Equations 2017

ADG, Sakulrang, Borri, Pitocco, Sungnul, Moore - Modeling continuous
glucose monitoring with fractional differential equations subject to
shocks, Journal of Theoretical Biology 2021

Unless "shocks" are added, model does not capture oscillations, same as
integer-order ODE.
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Random Ordinary Differential Equations RODE

If it is shocks you need, you might as well be ODE between-shocks!!! ⇒
RODE’s

dG
dt

= blablabla(G,X ),G(t0) = G0

dX
dt

= blablabla(X ,Y ),X (t0) = X0

dY
dt

= blablabla(Y ,Z ),Y (t0) = Y0

dZ
dt

= −kEZ Z +
nShocks∑

m=1

zmδ(t − tm), z(t0) = 0

where ∆tm := tm+1 − tm ∼ exp(λ) and zm ∼ N(0, σ2
z )
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One CGM subject by RODE

66 / 85



RODE’s

nShocks is determined by AIC or BIC

kind of works, presumes a shock-generating mechanism (plausible)

the (many!) other parameters are estimated by standard methods (OLS,
WLS,...)

the (meta) parameters λ and σ2
z are estimated directly from the sample

of estimated ∆tm ’s and zm ’s.

... questionable approach?
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Stochastic Differential Equations: Itô

In the case of integer order Stochastic Differential Equations we might use
the Itô definition:

dy = f (t , y(t))dt + σ(t , y(t))dWt , 0 ≤ t ≤ T ,

where σ(t , y(t)) is the time and state dependent variance of a standard
Gaussian N (0, σ2(t , y(t)) and Wt = W (t) is a standard Wiener process.
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... we tried, does not work at all :( :(

Wiener process (by definition) does not capture high autocorrelation between
increments.
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Fractional Stochastic Differential Equations: first attempt

In the present situation the time-course of transcutaneously, continuously
measured glycemia (CGM) depends both on superposed, different orders of
control, and on random system noise.

We thus formalize the problem as a process controlled by a deterministic
drift (of integer order in this case), driven by a fractional Brownian
diffusion:

{
dG(t) = (kG − kXGG(t))dt + σ

√
G(t)dBH(t)

G(0) = G0

BH(t) is the fractional-order Brownian Motion of Hurst index H.
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BH(t)

The fractional process BH(t) of Hurst index H ∈ (0, 1) is defined in terms of
the standard Wiener process B(t) via the Weyl integral

BH(t) = BH(0)

+
1

Γ(H + 1/2)

{∫ 0

−∞

[
(t − s)H−1/2 − (−s)H−1/2

]
dB(s)

+

∫ t

0
(t − s)H−1/2dB(s)

}
,
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Numerical approximation

A number of efficient numerical tools are available for the generation of
fractional noise, based e.g. on the frequency-domain interpretation of fBm as
white noise subject to a fractional order integration, or on the use of wavelets.
Here the sequence of increments {∆BH

k } is approximated using the "circulant
embedding method" (Kroese 2015, implemented in MATLAB™):

BH
k+1 := BH

k +∆BH
k , k = 0, 1, ..., BH

0 = 0

We also derived a stochastically exact method to generate discrete-time
samples of a fractional Brownian motion (follows the definition in the Weyl
integral and conforms to autocorrelation, but is slower).
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Parameter estimation

We employed a moment-based approach, by Weighted Least Squares ap-
proximation of the characterizing moments (mean, variance, autocorrelations
of lag 1 − 20) of the fractional Brownian motion, depending on the free model
parameters.

Weights were set to the inverse of the fitted autocorrelations and of the fitted
first two moments respectively.

The free parameters to be estimated are kXG, σ and the Hurst index H:
glycemia at time 0 was fixed at the observed concentration, whereas the
parameter kG was determined, assuming (average) steady state conditions at
t0:

kG = kXG G0
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Results
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Provisional Results

Clearly the results of the optimization procedure depend on the realization of
the driving process. Therefore the optimization was repeated for each of
1000 realizations of the driving Brownian motion.

The first two observed moments were 78.1 [mg/dl] and 82.6 [(mg/dl)2]
(mean and variance respectively); the respective mean ± SD values
computed on the predictions were 82.8 and 82.5 (loss ⩽ 95-th percentile),
respectively 83.9 and 200.9 (all realizations).
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Autocorrelation structure

Figure: Observed (red circles) and fitted autocorrelation functions (dashed black lines),
in tan the 95% loss envelope

76 / 85



Stochastic solution process

Figure: Observed (red circles) and solution processes (dashed black lines), in tan the
95% loss envelope
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Parameter estimates: kXG
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Parameter estimates: σ
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Parameter estimates: α, the Hurst index
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Conclusions
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there are many ways to skin a cat
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Where we are ...

There is an inherent limitation in the information carried by the
observation of a single variable relatively to a complex and noisy control
system.

Each single patient is characterized by a specific control signature, due
to lifestyle habits, body weight, muscle mass, and psychological setup.
The goal of CGM analysis is to identify this signature: while glycemia
prediction is practically unfeasible, modeling allows the diagnosis of the
compensation state of each patient.

a Fractional Stochastic Differential Equations model is consistent with
observed Continuous Glucose Monitoring (proof of concept).
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... and where we want to go

Mathematics: fractional drift together with fractional diffusion

Physics/Biology: meaning of coefficients.

Statistics/Optimization: numerically intensive correct parameter
estimation

Specific goal: incorporation of diagnostic modeling within Continuous
Glucose Monitors, allowing patients to directly follow their disease
evolution and assess the effect of mitigation measures.

General goal: coherent mathematical representation of the different
aspects of energy metabolism, allowing in-silico tailored predictions of
the effects of different therapy schemes.
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Thank you!

CNR Institute for Systems Analysis and Informatics, Rome, Italy

CNR Institute for Biomedical Research and Innovation, Palermo, Italy

Dept. of Mathematics, Mahidol University, Bangkok Thailand

Dept. of Biomatics, Óbuda University, Budapest Hungary
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