EMERGING OPTIMIZATION PROBLEMS AND MODERN OPTIMIZATION ALGORITHMS

Seyedali Mirjalili

Professor, Founding Director of the Centre for Artificial Intelligence Research and Optimisation

Torrens University Australia

AIRO: Centre for Artificial Intelligence Research and Optimisation

RESEARCH FOCUS AREAS IN AIRO CENTRE

MY STORY

- Dad's Pentium 3
- Bee hives and ant nests in our backyard

OUTLINES

Optimization problems

- Components
- Inputs
- Constraints
- Objectives

- Conventional
- Emergent complexity
- Swarm-based & evolutionary algorithms

PART I - OPTIMIZATION PROBLEMS

MAIN COMPONENTS OF AN OPTIMIZATION PROBLEM

MAIN COMPONENTS OF AN OPTIMIZATION PROBLEM

FORMULATING AN OPTIMIZATION PROBLEM

Minimise: $f(x_1, x_2, ..., x_n)$

Suject to: Constraints

OPTIMIZATION ALGORITHM

A SEARCH SPACE

EXISTING FRAMEWOKS TO WORK WITH PROBLEM OWNERS

- Iterative process
- Simplification over optimization

WELCOME TO OUR WORLD

PART II - OPTIMIZATION ALGORITHMS

GRADIENT-BASED OPTIMIZATION ALGORITHMS

• Gradient descent algorithm

RECENT ADVANCES TO TACKLE THESE CHALLENGES

- Mostly developed by the **Deep Learning community**
 - Momentum
 - Nesterov accelerated gradient (NAG)
 - Adagrad
 - Adadelta
 - RMSprop (Geoff Hinton)
 - Adaptive Moment Estimation (Adam)
 - AdaMax
 - Nadam
 - AMSGrad

• . . .

CHALLENGES

- Choosing a proper learning rate can be difficult.
- Learning rate schedules try to adjust the learning rate during training
- The same learning rate applies to all parameter updates.
- Avoiding getting trapped in their numerous suboptimal local minima
- Not practical for problems that are not differentiable

ISSUES WITH CLASSICAL ALGORITHMS

POSITION IN AI FIELD

WHY DO NATURE-INSPIRED ALGORITHMS WORK?

Emergent complexity

• Emergent complexity: "a phenomenon whereby larger entities arise through interaction among smaller or simpler entities"

- Necessary components:
 - Units with simple behaviors
 - External force for cooperation
- What we get is some complex behavior resulting from an optimization process

EXAMPLES OF EMERGENT COMPLEXITY

Units

Complex behaviour

EXAMPLES OF EMERGENT COMPLEXITY

Units

Complex behaviour

EMERGENT COMPLEXITY

- Emergent complexity is not fundamentally natural. We can develop artificial systems that show complex behavior (e.g. game of life)
- So we can achieve complexity, the question is so what? Not every complex system is useful but what about complexity in natural systems?
- Evolution tends to select complex systems for good reasons: **OPTIMIZATION**
- So if there is a complexity in nature, it might be a good reason for that
 - Evolutionary algorithms and swarm intelligence techniques are useful applications of emergent complexity
- So it is wise to inspire from natural systems:
 - 1. Complex behavior in nature MUST solve problems efficiently
 - A lot of problems in computer science are quite similar to problems in nature (path planning, scheduling,
 ..)
 - 3. They are scalable

FLOCK OF BIRDS

• Example: migration in a flock by birds in an unknown environment to minimize energy consumption is similar to flying in an unknown search space of a problem to minimize the cost function.

Alignment Separation

Separation

FLOCK OF BIRDS

Finding an optimal path to a food source by ants in an unknown environment is similar to finding a global optimum in an unknown search space

WHERE WE ARE HEADING

Heuristic \rightarrow Meta-heuristic \rightarrow Hyper-heuristic \rightarrow

Increased Automation

MY PLAN AS A MEMBER OF ÓBUDA UNIVERSITY

• ÓB Research capacity and culture

- Setting up and running a research group on optimization and evolutionary computing
- HDR Student exchanged
- Running a workshop every year on emerging areas in AI: machine learning, deep learning, and optimization

ÓB Research promotion and partnership

- Enabling collaboration between researchers in my centre at Torrens University Australia and ÓU's researchers
- Collaboration with internal stakeholders

Research Output

- Academic publishing strategy in the focus area
- Edited book, conference sessions, special issues, ...

Research Funding

• Develop a strategy for obtaining research funding in the focus area of the research group

RESEARCH BENEFIT AND IMPACT

- Help businesses and organisations in Hungary to be more agile and efficient
- Facilitate data-driven decision making
- Help stakeholders to understand the underlying factors and their impact in their decision making
- Help scientists and practitioners in Hungary to solve computationally expensive optimization problems
- Help with better understanding of how nature solves problem
- Developing innovative problem solving techniques inspired from nature

