

RECENT ADVANCES IN MEDICAL IMAGE SEGMENTATION AND CLASSIFICATION

László Szilágyi

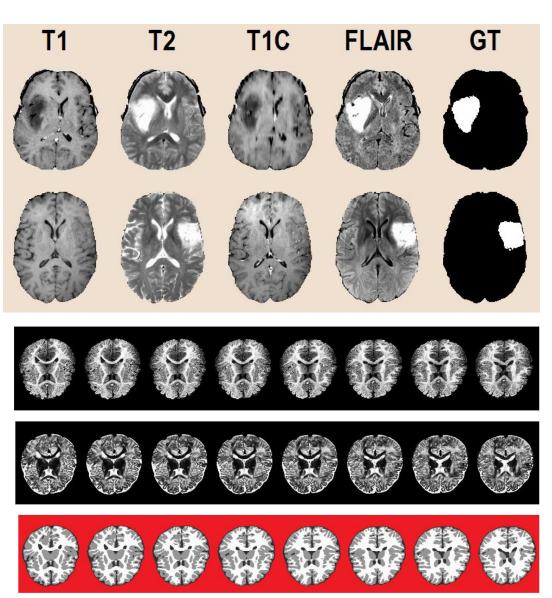
Obuda University, Budapest, Hungary Sapientia University of Transylvania, Romania

Why detect brain tumor?

- 100k++ people die of brain tumor yearly
- Early detection helps the survival
- More and more medical imaging devices
- Not so many more human experts
- Need for reliable automated algorithm
 - Draw attention to suspicious cases
 - Human expert has the last word
- Classical machine learning
- Convolutional neural networks and deep learning

Input Data

- Medical Image Computation and Computer Aided Interventions (MICCAI)
- Brain Tumor Segmentation Challenge (BraTS) since 2012
- BraTS train dataset 2019
 - 76 low-grade (LG) and 259 high-grade (HG) volumes
- Multispectral (T1, T2, T1C, FLAIR)
- 155 x 240 x 240 image volxels
- Ground truth (negative, active tumor, necrotic tumor, tumor core, edema)
- iSeg-2017 challenge: T1, T2, and GT
- No tumor, just tissue segmentation



Difficulties

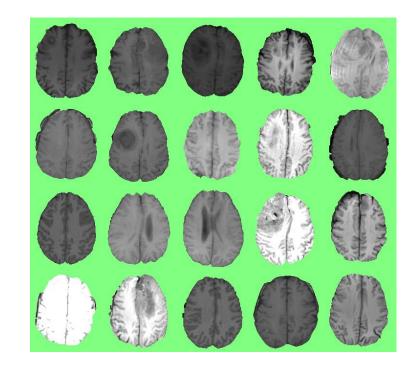
- Tumors have various locations, sizes, shapes, appearances
- Normal tissues are deformed, shifted
- Data channel registration is not perfect
- No standard scale of intensities
- Presence of noise, e.g. intensity non-uniformity

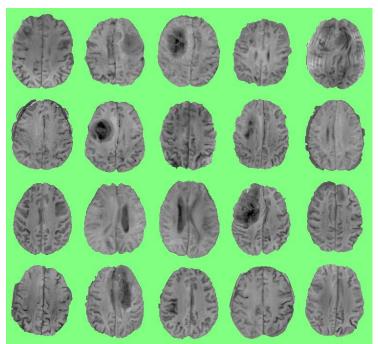
Solutions

- Pre-BraTS era
 - Mostly unsupervised, image-processing methods (Gordillo 2013)
- BraTS era, 1st stage, classical machine learning methods
 - Classification of individual brain pixels, lots of features extracted after serious preprocessing, post-processing to improve coherence of decisions
- BraTS era, 2nd stage, CNN + deep learning
 - CNN architectures, no hand-crafted features, less pre-processing
 - Processing whole volumes, results may need regularization
- Our focus:
 - Contribute to both chapters
 - Optimize some supportive elements of segmentation techniques
 - Data enhancement (pre-processing)
 - Extra services (during segmentation or post-processing)

No standard intensity scale

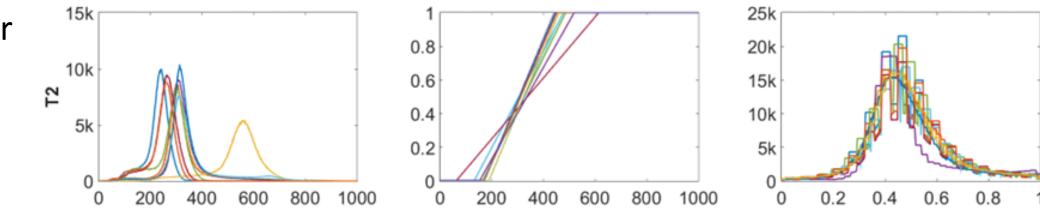
- Histograms need normalization
- Existing methods
 - Nyúl et al (2000) piece-wise linear transform
 - Leung et al (2010) segmentation, tissue-based alignment
 - Weisenfeld et al (2004) Kullback-Leibler divergence
 - Shinohara et al (2011) PCA
 - Jäger et al (2006) hidden Markov random field
 - Linear transform



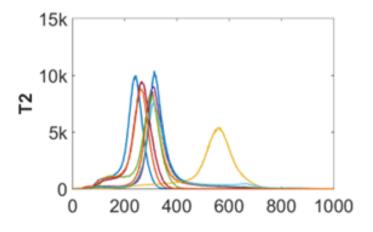


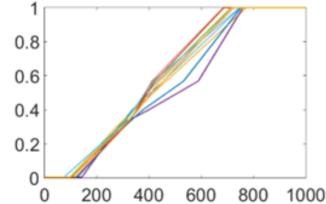
Linear vs. piece-wise linear transform

Linear



Piece-wise linear: better alignment, but is it good for segmentation?





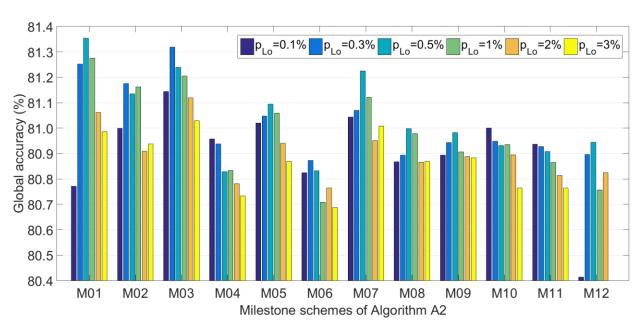


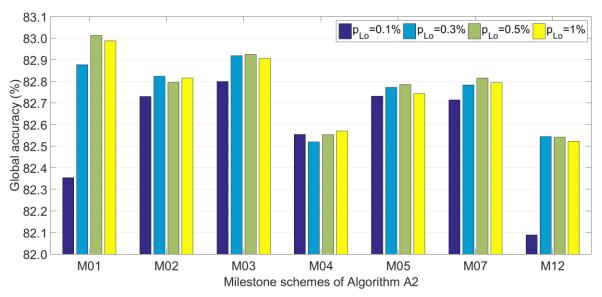
Parameters

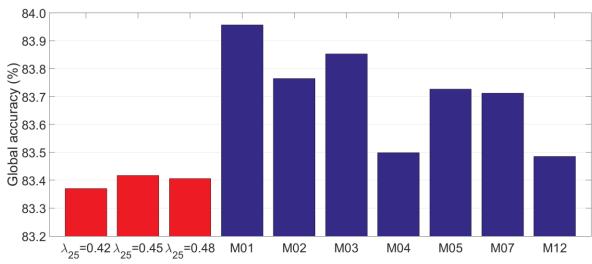
- Linear transform (Alg. A1)
 - single parameter $\lambda_{25} \in [0.3, 0.5)$, $p_{25} \rightarrow \lambda_{25}$ and $p_{75} \rightarrow (1 \lambda_{25})$
- Piece-wise linear transform (Alg. A2)
 - $-p_{Lo} < 0.03$, $p_{Hi} = 1 p_{Lo}$ what part to cut off at both ends
 - Set of landmark points
 - fixed points to be aligned

Scheme	Landmark points
M01	$p_{ m Lo}, p_{ m 50}, p_{ m Hi}$
M02	$p_{ m Lo}, p_{25}, p_{75}, p_{ m Hi}$
M03	$p_{ m Lo}, p_{25}, p_{50}, p_{75}, p_{ m Hi}$
M04	$p_{ m Lo}, p_{10}, p_{50}, p_{90}, p_{ m Hi}$
M05	$p_{\mathrm{Lo}}, p_{20}, p_{40}, p_{60}, p_{80}, p_{\mathrm{Hi}}$
M06	$p_{ m Lo}, p_{10}, p_{25}, p_{75}, p_{90}, p_{ m Hi}$
M07	$p_{ m Lo}, p_{20}, p_{35}, p_{50}, p_{65}, p_{80}, p_{ m Hi}$
M08	$p_{ m Lo}, p_{10}, p_{25}, p_{50}, p_{75}, p_{90}, p_{ m Hi}$
M09	$p_{ m Lo}, p_{10}, p_{25}, p_{40}, p_{60}, p_{75}, p_{90}, p_{ m Hi}$
M10	$p_{ m Lo}, p_{10}, p_{25}, p_{40}, p_{50}, p_{60}, p_{75}, p_{90}, p_{ m Hi}$
M11	$p_{ m Lo}, p_{10}, p_{20}, p_{30}, p_{40}, p_{60}, p_{70}, p_{80}, p_{90}, p_{ m Hi}$
M12	$p_{ m Lo}, p_{10}, p_{20}, p_{30}, p_{40}, p_{50}, p_{60}, p_{70}, p_{80}, p_{90}, p_{ m Hi}$

Segmentation accuracy achieved with random forest classifier on iSeg-2017 data

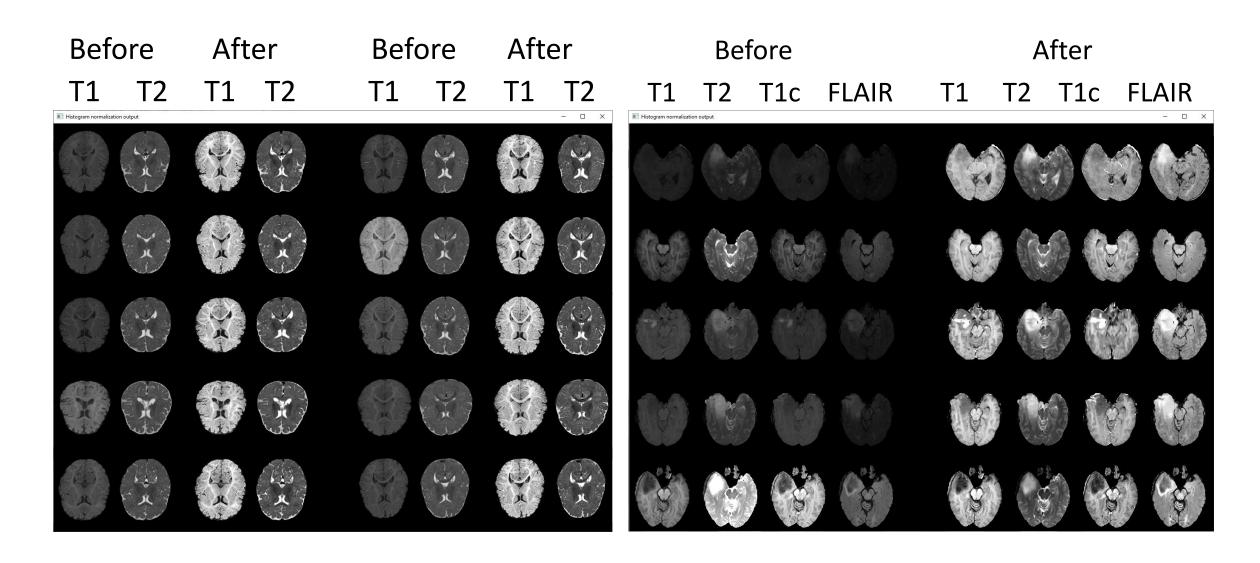






Algorithm A1 (first three columns) and Algorithm A2 (last seven columns)

Before and after histogram alignment



Recommendations

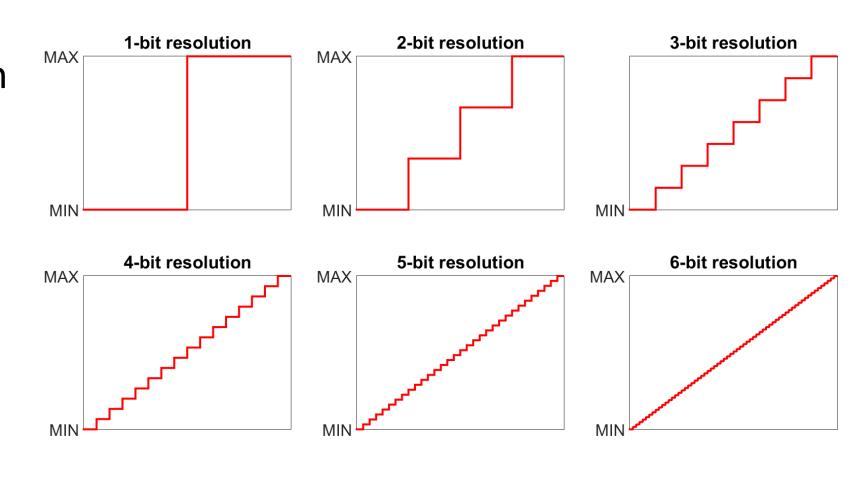
- Piece-wise linear transform (Nyúl et al) can perform better, but only if appropriately used
- Important issues
 - Not too many landmark points
 - Best schemes: M01, M03
 - No landmark points close to any ending od the histogram
 - better p_{20} than p_{10} , better p_{80} than p_{90}
- Most participants at early BraTS competitions did not set it properly
- Better accuracy, higher Dice score, up to 2% difference

Scheme	Landmark points
	Landilark points
M01	$p_{ m Lo}, p_{ m 50}, p_{ m Hi}$
M02	$p_{ m Lo}, p_{25}, p_{75}, p_{ m Hi}$
M03	$p_{ m Lo}, p_{25}, p_{50}, p_{75}, p_{ m Hi}$
M04	$p_{ m Lo}, p_{ m 10}, p_{ m 50}, p_{ m 90}, p_{ m Hi}$
M05	$p_{ m Lo}, p_{ m 20}, p_{ m 40}, p_{ m 60}, p_{ m 80}, p_{ m Hi}$
M06	$p_{ m Lo}, p_{10}, p_{25}, p_{75}, p_{90}, p_{ m Hi}$
M07	$p_{ m Lo}, p_{ m 20}, p_{ m 35}, p_{ m 50}, p_{ m 65}, p_{ m 80}, p_{ m Hi}$
M08	$p_{ m Lo}, p_{10}, p_{25}, p_{50}, p_{75}, p_{90}, p_{ m Hi}$
M09	$p_{ m Lo}, p_{10}, p_{25}, p_{40}, p_{60}, p_{75}, p_{90}, p_{ m Hi}$
M10	$p_{ m Lo}, p_{10}, p_{25}, p_{40}, p_{50}, p_{60}, p_{75}, p_{90}, p_{ m Hi}$
M11	$p_{ m Lo}, p_{10}, p_{20}, p_{30}, p_{40}, p_{60}, p_{70}, p_{80}, p_{90}, p_{ m Hi}$
M12	$p_{\mathrm{Lo}}, p_{10}, p_{20}, p_{30}, p_{40}, p_{50}, p_{60}, p_{70}, p_{80}, p_{90}, p_{\mathrm{Hi}}$

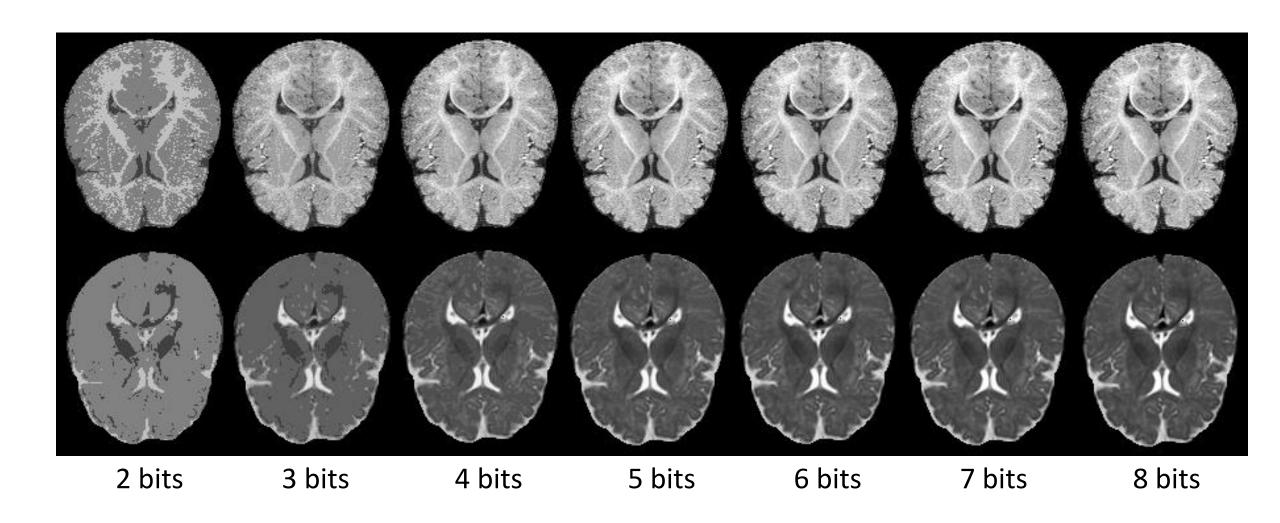
- CNN based methods only need enhancement of visibility
- Contrast Limited Adaptive
 Histogram Equalization (CLAHE)

Spectral resolution

- What is the effect of color depth upon segmentation quality?
- How many bits are useful?
- Observed MRI data come at 16-bit resolution

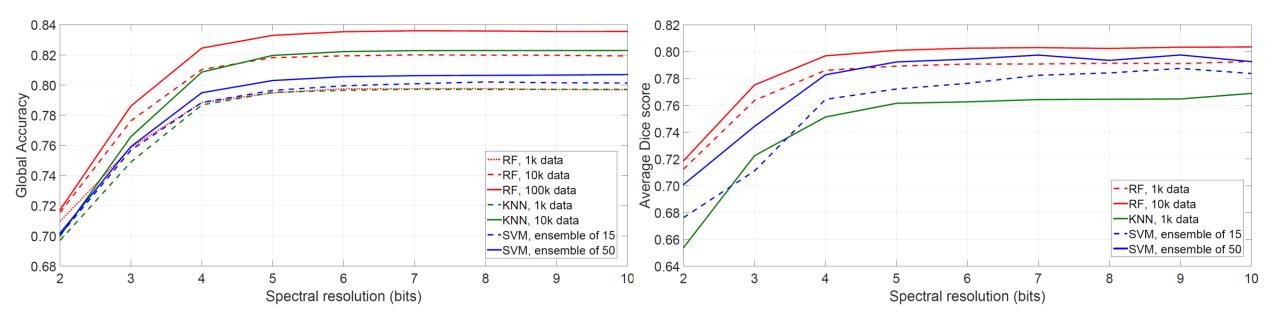


MRI data represented at 2 to 8 bits spectral resolution



Results

- Above 6-bit resolution the segmentation quality saturates
- Multi-channel preprocessed data can be efficiently stored in single byte per feature
- Reduce the archive storage space by 50%



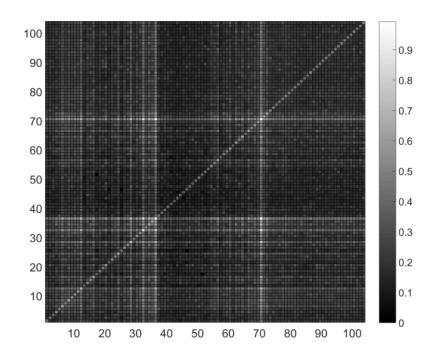
Feature generation and selection

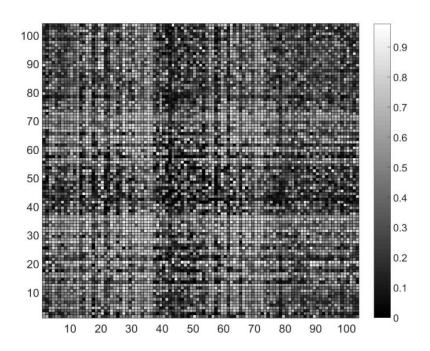
- CNN-based methods extract the features they use
- Classical machine learning based methods use handcrafted features
- 4 observed features (T1, T2, T1C, FLAIR)
- $4 \times 25 = 100$ computed features

Neighborhood	Average	Maximum	Minimum	Median	Gradient	Gabor	Total
$3 \times 3 \times 3$	4	4	4				12
3×3	4			4			8
5×5	4			4			8
7×7	4			4	16		24
9×9	4			4			8
11×11	4			4		32	40
Total	24	4	4	20	16	32	100

Feature selection

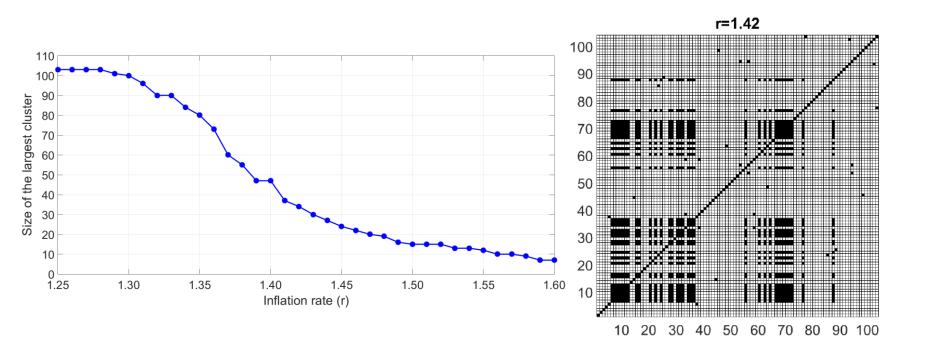
- Markov clustering based on pairwise "similarity" data
- Similarity of features
 - How often they appear together in making a decision
 - How often these decisions are correct

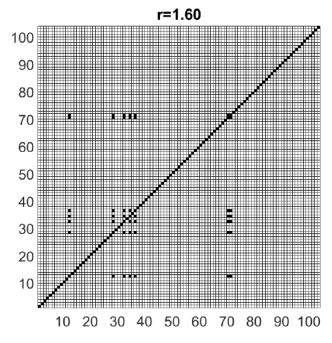




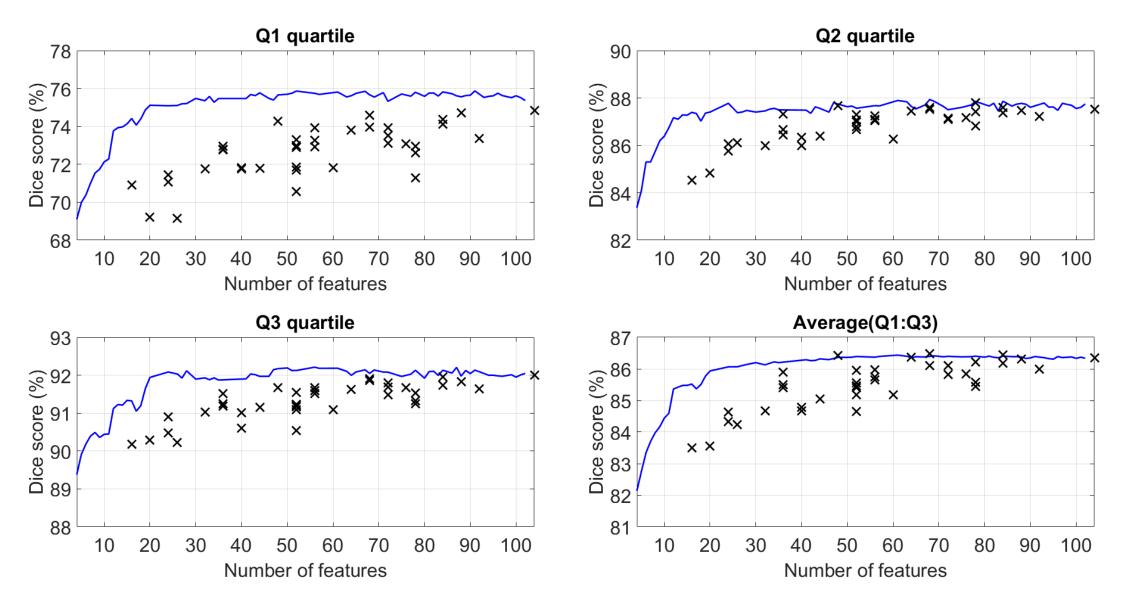
Reduced sets of features

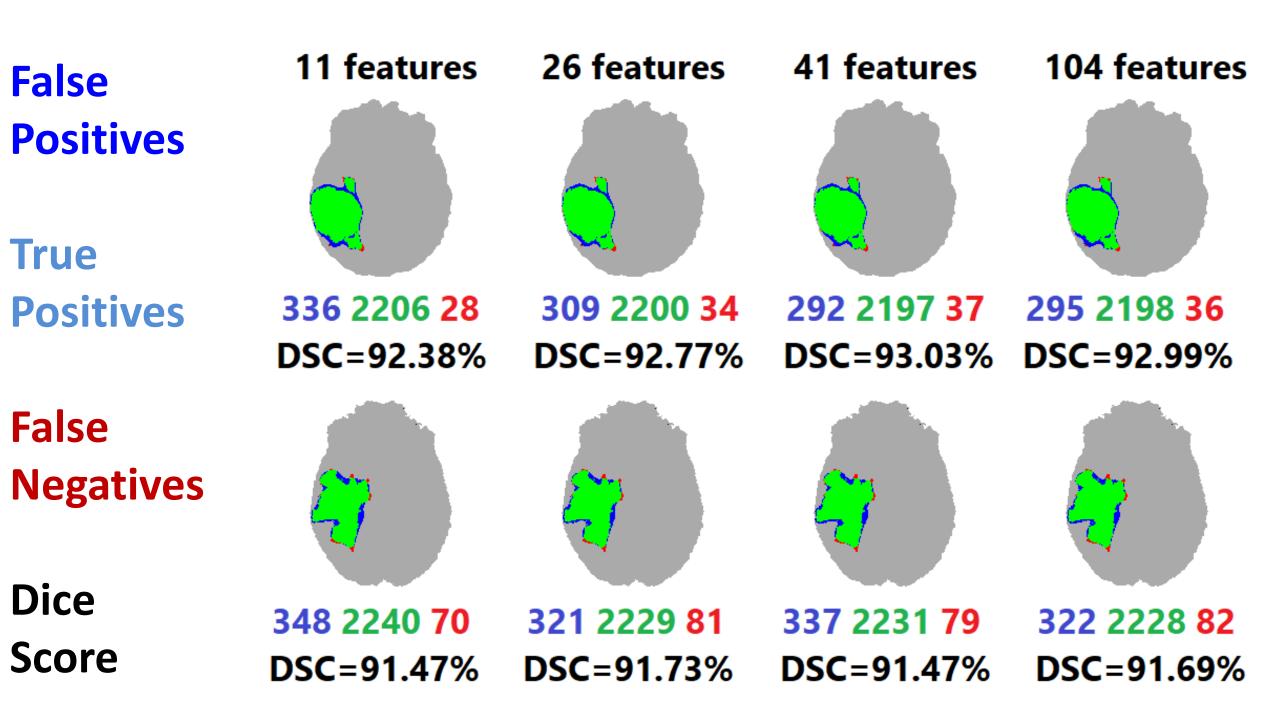
- Markov clustering has a single parameter: inflation rate r
- Size of largest cluster of features depends on r



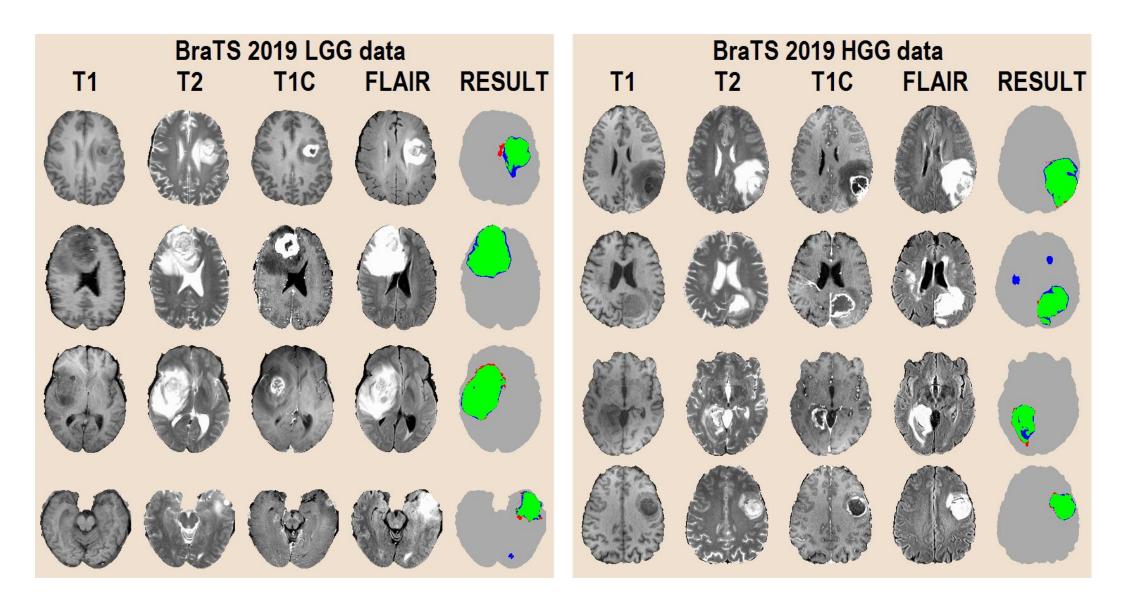


Segmentation quality

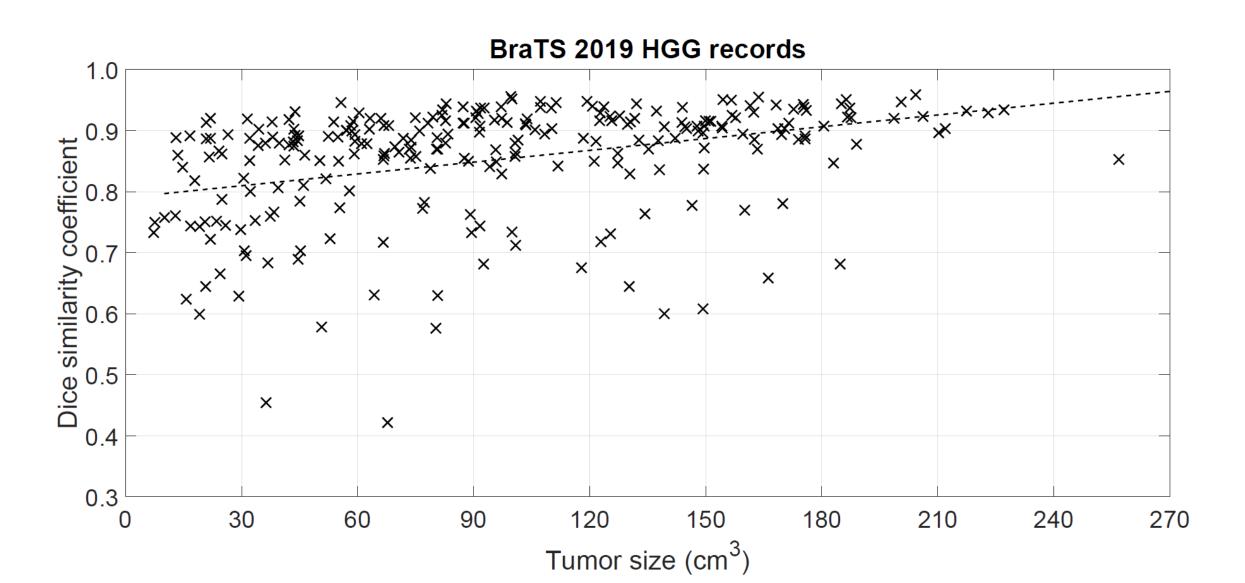




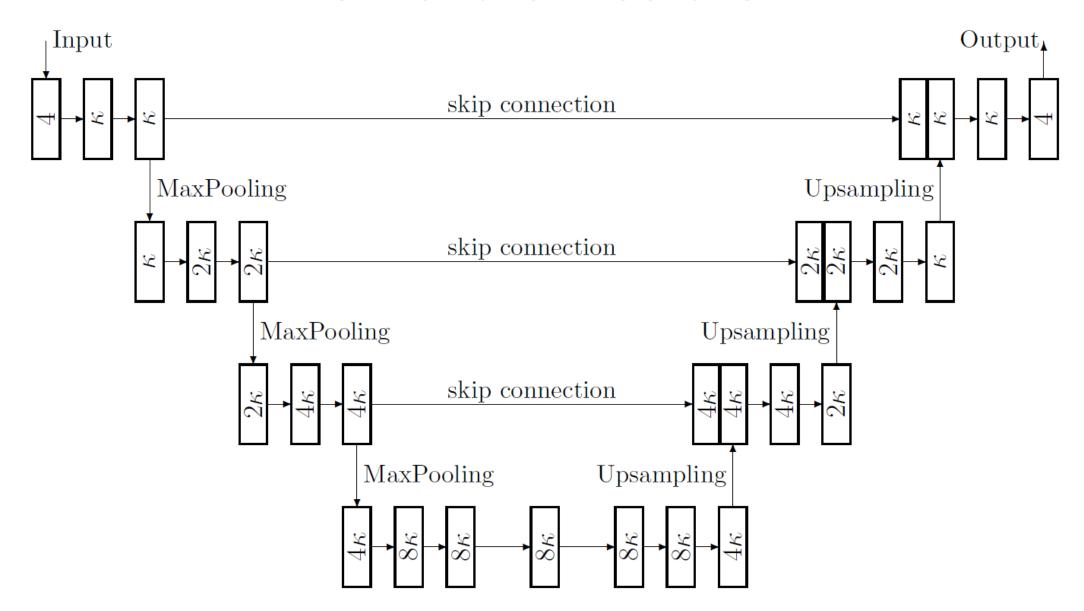
Segmentation results (TP FP FN)



Segmentation accuracy vs. tumor size (HGG)

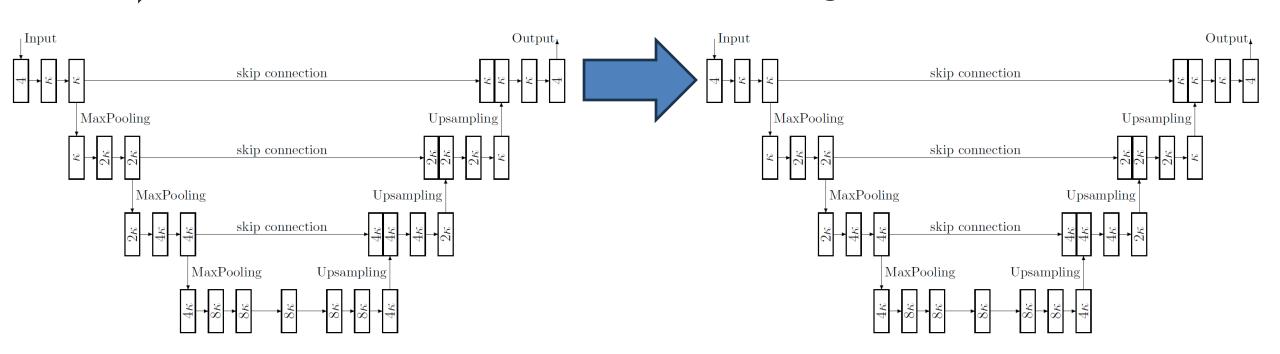


U-net architecture



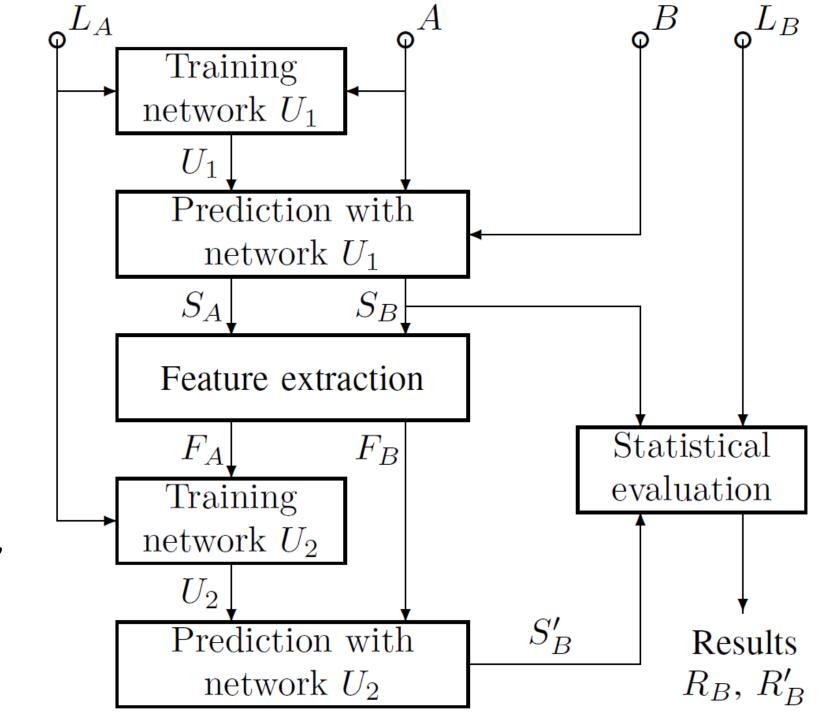
Proposed cascade

- First U-net performs a segmentation of preprocessed MRI data
- Second U-net performs post-processing using features extracted from the first segmentation outcome
- Feature extraction: percentage of positive pixels within 3x3x3, 5x5x5, 7x7x7, 9x9x9 sized neighborhoods



Data flow

- Dataset divided in two equal groups
- Data A, B
- Label L_A, L_B
- Initial segmentations S_A , S_B
- Features F_A, F_B
- Final segmentations S'_A,
 S'_B
- A and B can swap roles



Measuring accuracy

- Based on ground truth and final decision: TP, TN, FP, FN
- Accuracy indicators: DSC, TPR, TNR, ACC

Indicator	Formula
True positive rate	$TPR_i = \frac{TP_i}{TP_i + FN_i}$
True negative rate	$TNR_i = \frac{TN_i}{TN_i + FP_i}$
Positive predictive value	$PPV_i = \frac{\dot{TP}_i}{TP_i + FP_i}$
Dice score or F_1 -score	$DSC_i = \frac{2 \times TP_i}{2 \times TP_i + FP_i + FN_i}$
Accuracy	$ACC_i = \frac{TP_i + TN_i}{TP_i + TN_i + FP_i + FN_i}$

- Individual value for each volume (record)
- Average, SD, quartiles

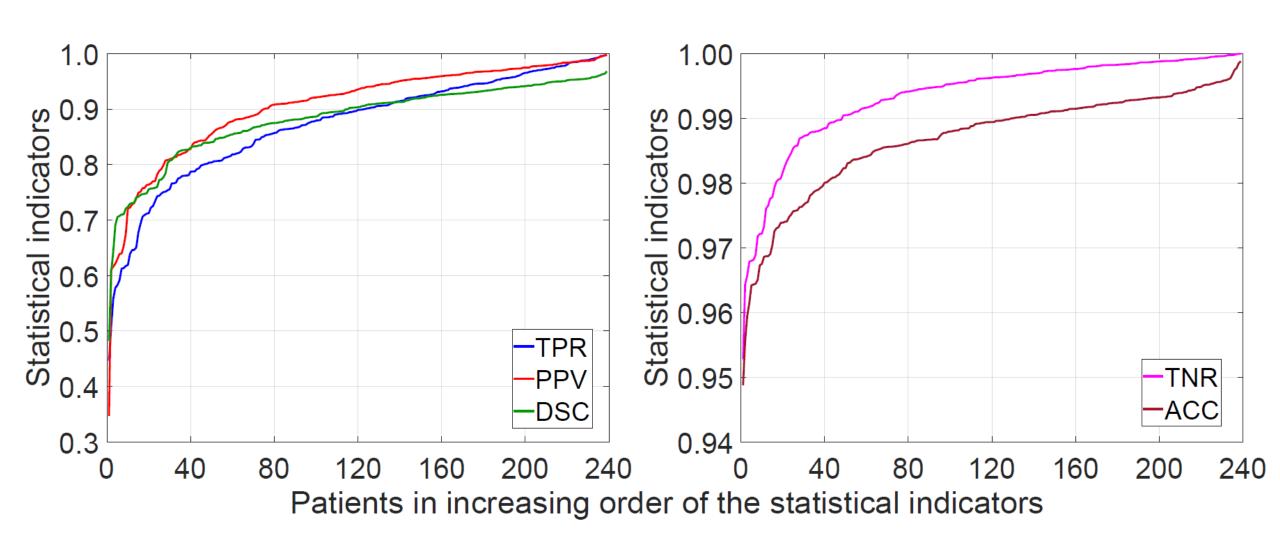
Overall accuracy indicators

	Value	DSC	TPR	PPV	TNR	ACC
P	average	0.8768	0.8662	0.9057	0.9920	0.9864
PP	stdev	0.0776	0.1154	0.0961	0.0073	0.0094
ore	1st quartile	0.8503	0.8214	0.8751	0.9888	0.9836
Before	median	0.9024	0.8868	0.9338	0.9935	0.9891
	3rd quartile	0.9302	0.9548	0.9757	0.9973	0.9921
	average	0.8879	0.8665	0.9251	0.9913	0.9870
PP	stdev	0.0767	0.1108	0.0819	0.0085	0.0094
er	1st quartile	0.8612	0.8303	0.9070	0.9891	0.9834
After	median	0.9116	0.8957	0.9531	0.9939	0.9901
	3rd quartile	0.9380	0.9398	0.9749	0.9964	0.9932

Parameter selection

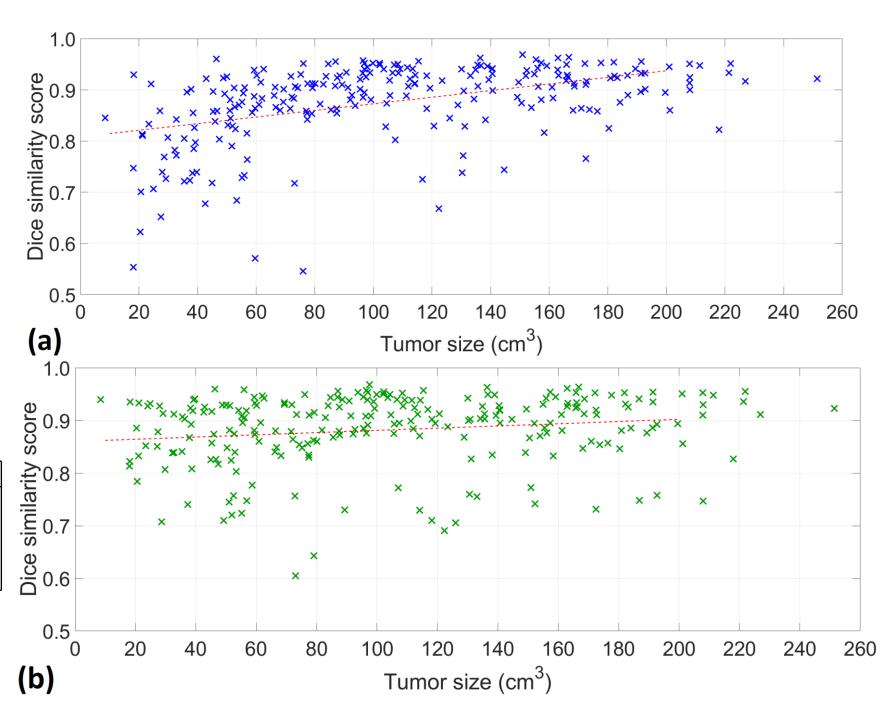
	Layer depth parameter κ						
DSC	16	32	48	64	80	96	112
average	0.8568	0.8702	0.8725	0.8629	0.8707	0.8768	0.8688
stdev	0.0868	0.0757	0.0769	0.0944	0.0780	0.0774	0.0798
1st quartile	0.8255	0.8509	0.8464	0.8386	0.8379	0.8503	0.8419
median	0.8809	0.8942	0.8956	0.8921	0.8942	0.9024	0.8910
3rd quartile	0.9164	0.9215	0.9260	0.9240	0.9263	0.9302	0.9259
ranked 1st	15	29	33	19	23	58	62
ranked 2nd	20	39	26	31	52	52	19
ranked 3rd	15	23	41	33	59	33	35
Total	50	91	100	83	134	143	116
$DSC_i > 0.93$	31	40	52	47	52	61	51
$DSC_i > 0.9$	86	109	110	105	112	122	107
$DSC_i > 0.85$	160	181	177	170	175	180	169
$DSC_i > 0.8$	193	201	203	196	204	202	200

Accuracy Indicators for Individual Volumes

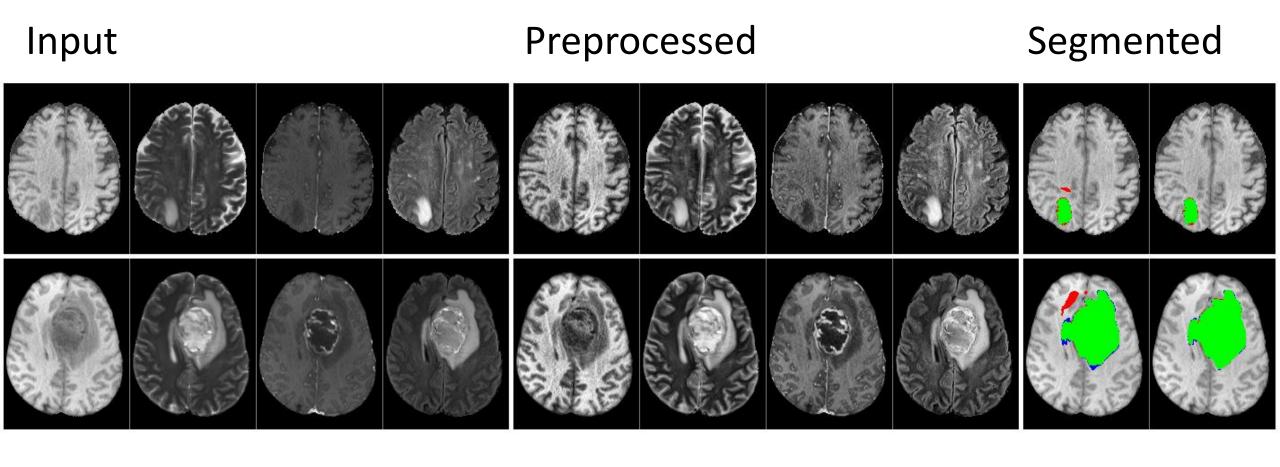


Effect of Post-processing

Tumor size	Before PP	After PP
$10 \ cm^{3}$	0.8147	0.8622
$20 \ cm^{3}$	0.8212	0.8643
$50 \ cm^{3}$	0.8405	0.8706
$100 \ cm^3$	0.8728	0.8811



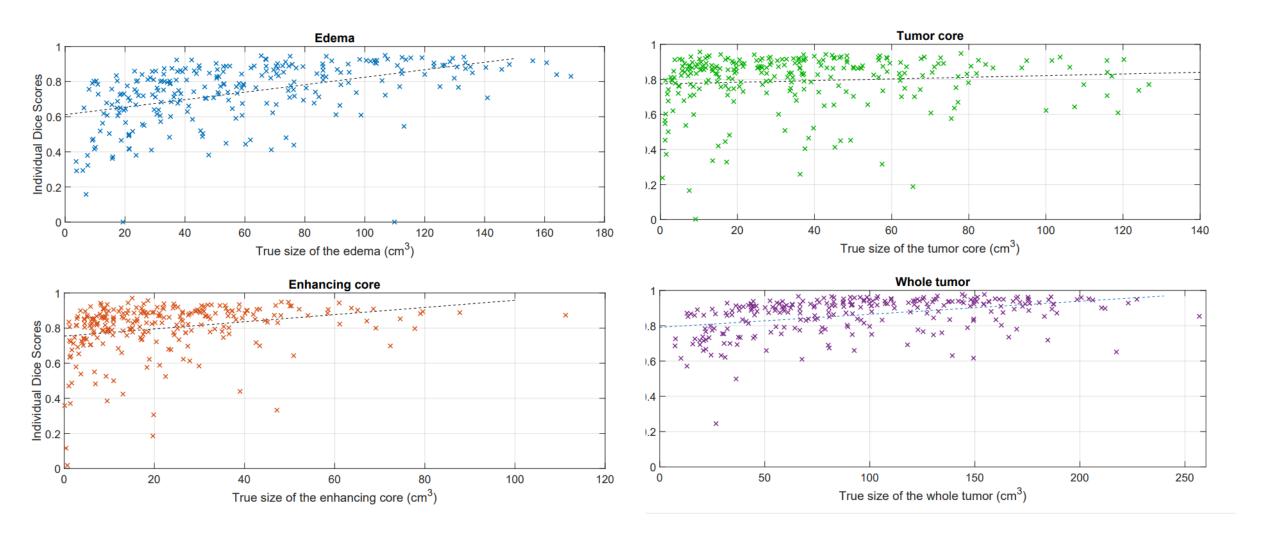
Detected tumors: TP FP FN



Paper	Classifier	Data	Mean DSC
Tustison et al. [10] (2015)	RF, MRF	3	0.87
Pereira et al. [17] (2016)	CNN	2013	0.88
Lefkovits et al. [30] (2017)	RF		0.868
Havaei et al. [31] (2017)	deep CNN	ΙΤS	0.88
Pinto et al. [14] (2018)	ERT	BraTS	0.85
Pereira et al. [32] (2019)	FCNN	I	0.86
Pereira et al. [17] (2016)	CNN		0.78
Kamnitsas et al. [20] (2017)	deep CNN	15	0.849
Zhao et al. [18] (2018)	FCNN, CRF	2015	0.84
Chen et al. [33] (2019)	CNN	S	0.85
Ding et al. [34] (2019)	deep ResNet	BraTS	0.86
Wu et al. [19] (2020)	CNN	$\mathbf{B}_{\mathbf{j}}$	0.83
Győrfi et al. [35] (2021)	BDT ensemble		0.8355
Bhalerao et al. [36] (2020)	3D Residual U-Net	20	0.85269
Wang et al. [37] (2020)	3D U-Net	/61	0.894
Guo et al. [38] (2020)	CNN + fusion	2019/20	0.872
Győrfi et al. [35] (2021)	BDT ensemble		0.8516
Lefkovits et al. [39] (2022)	CNN ensemble	BraTS	0.8780
Proposed method	U-net cascade	Bı	0.8879

Comparison

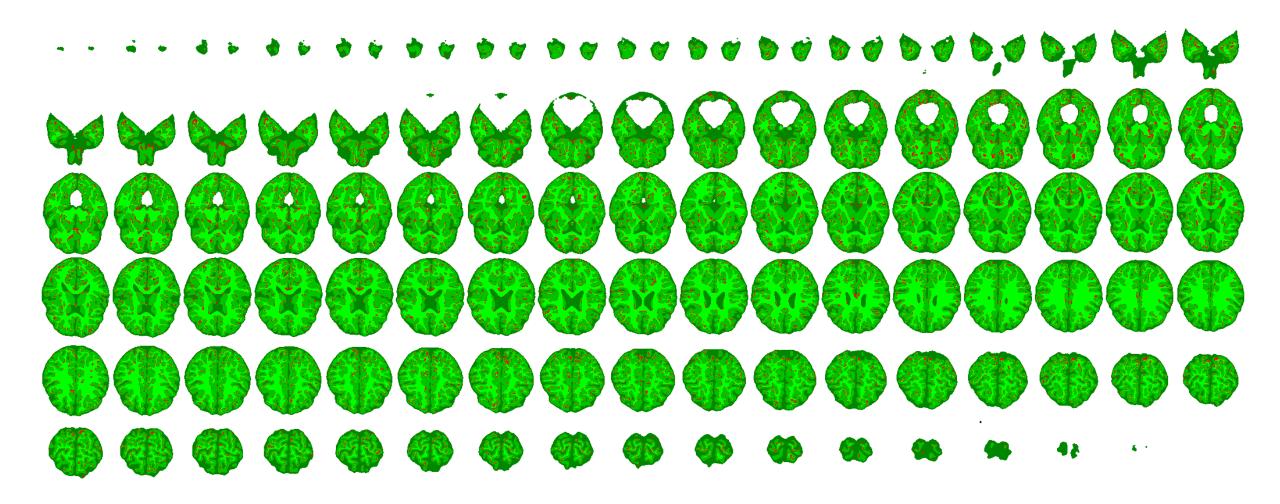
Dice similarity scores of various tumor parts



Comparison

			Test	Av	verage I	Dice sco	ore
Paper	Classifier	Data set	items	ED	EC	TC	WT
Csaholczi et al.[29]	random forest	BraTS15 train	220	0.6566	0.6728	0.6554	0.7722
Unpublished	XGBoost	BraTS19 train	259	0.7112	0.7895	0.7795	0.8339
Kamnitsas et al.[16]	CNN ensemble	BraTS15 train	274	N/A	0.728	0.754	0.901
Kamnitsas et al.[16]	CNN ensemble	BraTS15 test	110	N/A	0.634	0.667	0.849
Ding $et \ al.[17]$	ResNet	BraTS15 test	93	N/A	0.63	0.71	0.86
Bhalerao et al.[18]	3D Res U-net	BraTS19 test	125	N/A	0.697	0.772	0.828
Wang $et \ al.[30]$	3D U-net	BraTS19 test	125	N/A	0.778	0.798	0.852
Lefkovits et al.[31]	CNN ensemble	BraTS19 train	259	0.8005	0.7671	N/A	0.878
Proposed	U-net	BraTS19 train	259	0.7368	0.8005	0.7912	0.8612

Brain tissue segmentation with U-net

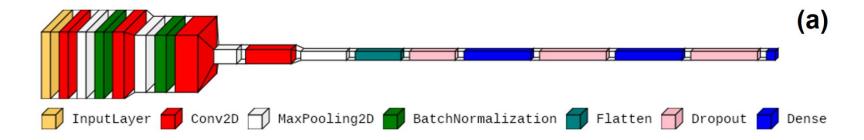


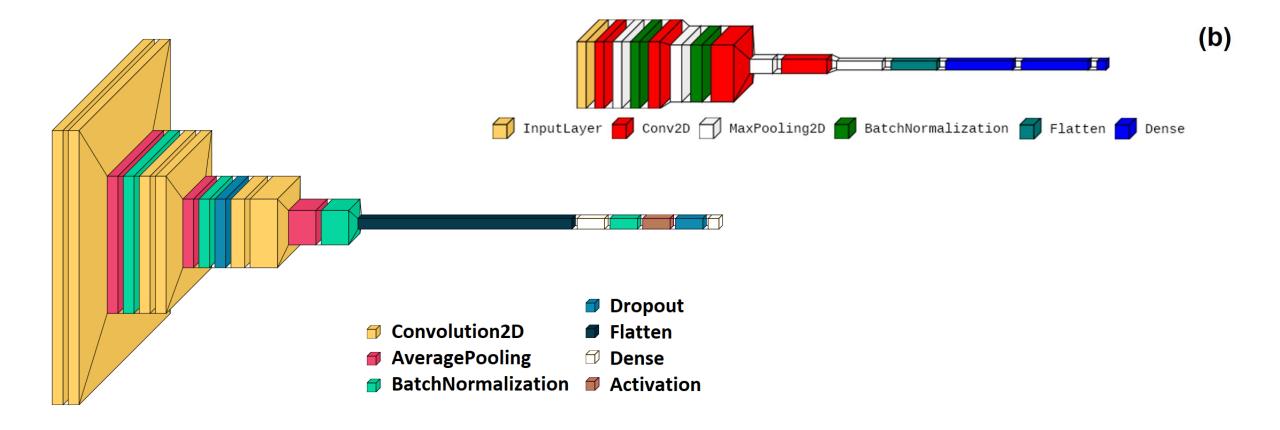
Input Data for Tumor Classification

Problem	Glioma	Meningioma	Pituitary	Positives	Negatives	Total
2-class [26]	-	-	-	1536	1500	3036
3-class [27]	1424	710	930	-	-	3064
4-class [28]	826	822	827	-	395	2870

- [26] www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection, last visited on 14 December 2023.
- [27] M. Nickparvar, "Brain Tumor MRI Dataset [Data set]," Kaggle, 2021, https://doi.org/10.34740/KAGGLE/DSV/2645886
- [28] S. Bhuvaji, A. Kadam, P. Bhumkar, S. Dedge, and S. Kanchan, "Brain Tumor Classification (MRI) [Data set]," Kaggle, 2020, https://doi.org/10.34740/KAGGLE/DSV/1183165

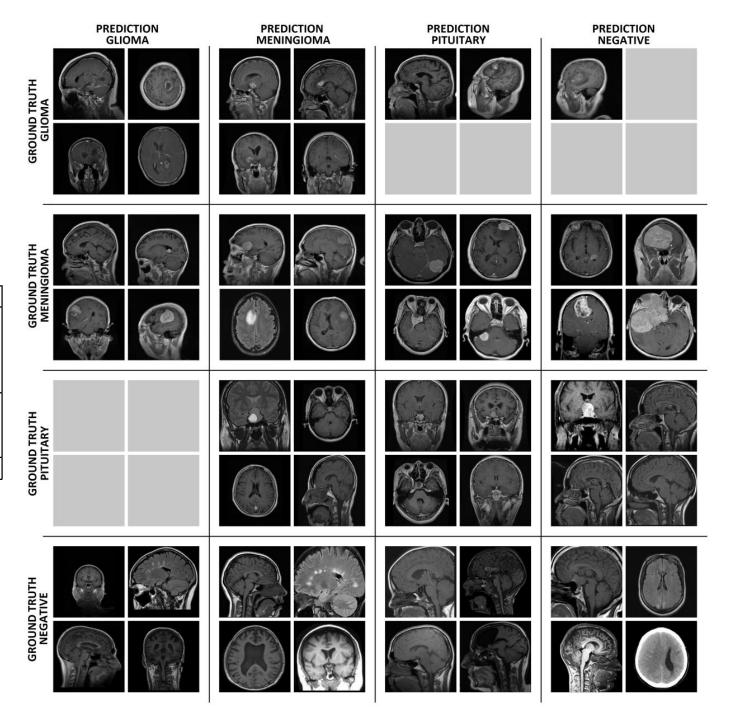
Some network architectures





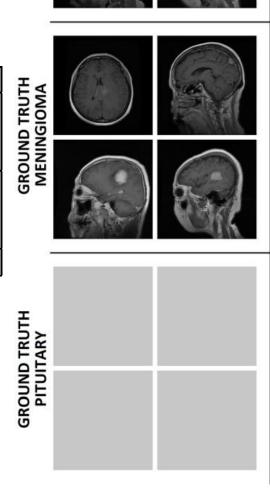
Results – 4 classes

	Glioma	Meningioma	Pituitary	Negative
Glioma	804	19	2	1
Meningioma	16	762	14	30
Pituitary	0	4	819	4
Negative	6	11	8	370
Recall	0.9734	0.9270	0.9903	0.9367
Precision	0.9734	0.9573	0.9715	0.9136
Dice score	0.9734	0.9419	0.9808	0.9250
Accuracy		0.959	99	



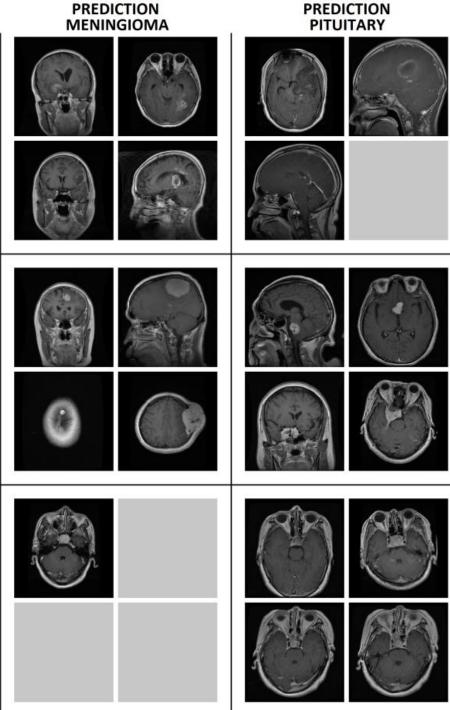
Results – 3 classes

	Glioma	Meningioma	Pituitary
Glioma	1402	19	3
Meningioma	34	672	4
Pituitary	0	1	929
Recall	0.9846	0.9465	0.9989
Precision	0.9763	0.9711	0.9925
Dice score	0.9804	0.9586	0.9957
Accuracy		0.9801	



PREDICTION GLIOMA

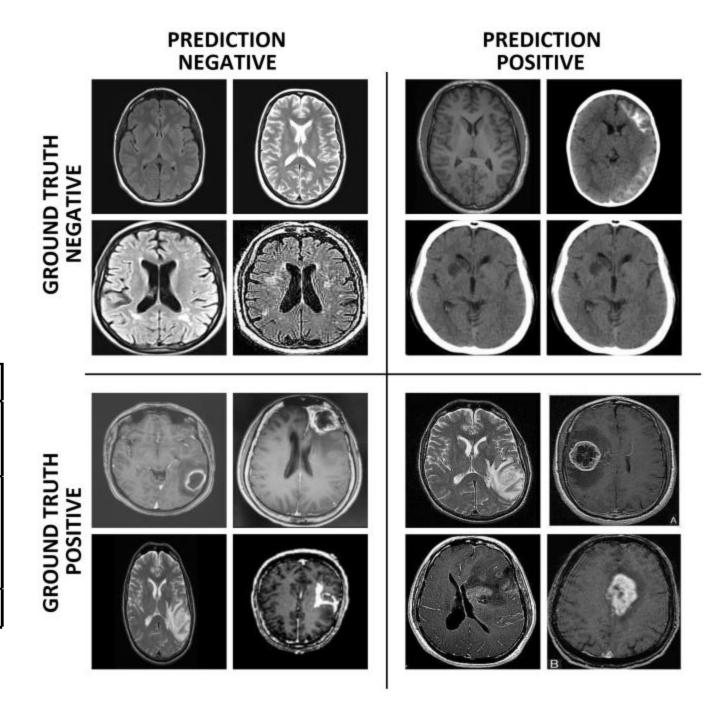
GROUND TRUTH GLIOMA



Results – 2 classes

ACCURACY BENCHMARKS OF THE 2-CLASS CLASSIFICATION PROBLEM

	Negative	Positive
Negative	1486	14
Positive	20	1516
Recall	0.9907	0.9870
Precision	0.9867	0.9908
Dice score	0.9887	0.9889
Accuracy	0.9888	



Other study: best performing models

Rank	CNN	Dense	Image	Parame-	F1 score	Accuracy	AUC Meningioma	AUC Glioma	AUC Pituitary
no.	network	neurons	size	ters	mean \pm stdev				
R1	∗VGG	256	256×256	[MA][D]	0.9827 ± 0.0066	0.9827 ± 0.0066	0.9961 ± 0.0008	0.9981 ± 0.0013	0.9987 ± 0.0013
R2	∗VGG	2048	256×256	[MA][D][K9]	0.9814 ± 0.0042	0.9814 ± 0.0042	0.9949 ± 0.0035	0.9973 ± 0.0023	0.9988 ± 0.0021
R3	∗VGG	2048	256×256	[MA][K9]	0.9814 ± 0.0029	0.9814 ± 0.0030	0.9957 ± 0.0020	0.9975 ± 0.0019	0.9995 ± 0.0008
R4	∗VGG	1024	256×256	[MA][D]	0.9808 ± 0.0037	0.9807 ± 0.0037	0.9967 ± 0.0010	0.9980 ± 0.0015	0.9988 ± 0.0011
R5	*VGG	1024	128×128	[MA][D]	0.9795 ± 0.0018	0.9794 ± 0.0019	0.9940 ± 0.0044	0.9967 ± 0.0022	0.9994 ± 0.0008
R6	*VGG	256	256×256	[MA]	0.9789 ± 0.0054	0.9788 ± 0.0056	0.9935 ± 0.0016	0.9968 ± 0.0016	0.9992 ± 0.0010
R 7	*VGG	4096	256×256	[MA][D]	0.9782 ± 0.0053	0.9781 ± 0.0054	0.9942 ± 0.0024	0.9972 ± 0.0020	0.9981 ± 0.0020
R8	*VGG	2048	128×128	[MA][D][K9]	0.9781 ± 0.0037	0.9781 ± 0.0038	0.9941 ± 0.0043	0.9963 ± 0.0017	0.9975 ± 0.0023
R9	*VGG	32	128×128	[MA]	0.9778 ± 0.0047	0.9778 ± 0.0047	0.9943 ± 0.0018	0.9973 ± 0.0015	0.9991 ± 0.0009
R10	∗VGG	4096	128×128	[MA][D]	0.9776 ± 0.0046	0.9775 ± 0.0047	0.9930 ± 0.0025	0.9958 ± 0.0015	0.9985 ± 0.0012

		Predicted		
	Class	Meningioma	Glioma	Pituitary
lal	Meningioma	691	10	7
Actual	Glioma	24	1399	3
4	Pituitary	5	4	921
		Rank R1		

	Predicted				
Meningioma	Glioma	Pituitary			
681	17	10			
25	1401	0			
3	2	925			
R	Rank R2				

Predicted				
Meningioma	Glioma	Pituitary		
681	19	8		
25	1401	0		
3	2	925		
Rank R3				

P	Predicted				
Meningioma	Glioma	Pituitary			
685	13	10			
29	1396	1			
3	3	924			
R	lank R	4			

P	Predicted				
Meningioma	Glioma	Pituitary			
687	14	7			
36	1390	0			
4	2	924			
R	lank R	5			

al	Meningioma	685	13	10
ctu	Glioma	29	1396	1
A	Pituitary	3	3	924
		F	Rank R	6

685	12	11
34	1391	1
7	2	921
F	Rank R	7

]	678	22	8
	22	1401	3
	6	6	918
	R	Rank R	8
_			

673	24	11
28	1398	0
3	2	925
R	Rank R	9

673	24	11			
28	1398	0			
3	2	925			
Rank R10					

Comparison

	Classif.	Test	Accuracy (test samples)		
Paper	method	images	2-class	3-class	4-class
Toğaçar et al [20]	SVM	93	0.9677	_	_
Vankdothu et al [21]	RCNN	394	0.9517	_	_
Rajeev et al [22]	LSTM	978	0.9949	_	0.9834
Cheng et al [23]	SPM	3064	_	0.9128	_
Isunuri et al [24]	EfficientNet	1739	_	0.9835	_
Rahman et al [25]	Parallel DCNN	200+	_	0.9610	0.9560
Dénes-F. et al [19]	VGG	3064	_	0.9822	_
Proposed	CNN	2800+	0.9888	0.9801	0.9599

Conclusions

- Tumors of 10cm³ size can be easily detected
- Most tumors can be segmented with 85-90% Dice score, that is approx. 98.5% accuracy of pixelwise decisions
- CNN + DL are the current state-of-the-art
 - perform better
 - work longer, decisions hardly explainable

Some papers

- A. Győrfi, L. Szilágyi, L. Kovács: A Fully Automatic Procedure for Brain Tumor Segmentation from Multi-Spectral MRI Records Using Ensemble Learning and Atlas-Based Data Enhancement. Applied Sciences 11(2):564, 2021.
- A. Győrfi, L. Kovács, L. Szilágyi: A two-stage U-net approach to brain tumor segmentation from multi-spectral MRI records. Acta Universitatis Sapientiae Informatica, 14(2):223–247, 2022.
- L. Dénes-Fazakas, G. Eigner, L. Kovács, L. Szilágyi: Two U-net Architectures for Infant Brain Tissue Segmentation from Multi-Spectral MRI Data. IFAC World Congress 2023, IFAC PapersOnLine 56(2):5637-5642, 2023.
- S. Csaholczi, L. Kovács, L. Szilágyi: Brain Tumor Classification Using Convolutional Neural Networks and Deep Learning. ICCC 2024, pp. 399-404.
- L. Szilágyi, Á. Győrfi, L. Dénes-Fazakas, S. Csaholczi, I.M. Pisak-Lukáts, L. Kovács: Challenges and Difficulties of Multi-Spectral MRI Based Brain Tumor Detection and Segmentation, ICHST 2023, pp. 1-6.
- A. Kőble, A. Győrfi, S. Csaholczi, B. Surányi, L. Dénes-Fazakas, L. Kovács, L. Szilágyi: Identifying the most suitable histogram normalization technique for machine learning based segmentation of multispectral brain MRI data. IEEE AFRICON 2021, pp. 71–76.
- A. Győrfi, S. Csaholczi, I.M. Pisak-Lukáts, L. Dénes-Fazakas, A. Kőble, O. Shvets, Gy. Eigner, L. Kovács,,
 L. Szilágyi: Effect of spectral resolution on the segmentation quality of magnetic resonance imaging data. INES 2022, pp. 53–58.

Team

- PhD students
 - Lehel Dénes-Fazakas
 - Ágnes Győrfi
 - Szabolcs Csaholczi
 - Ioan M. Pisak-Lukáts

- Collaborators
 - László Lefkovits
 - Szidónia Lefkovits
- Special thanks
 - Levente Kovács
 - Vladik Kreinovich