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• Built a Galena Crystal Radio… 
more like “Assembled a Galena 
Crystal Radio Detector Kit.”

• Read “La Radio? Mais c’est très simple!” by 
Eugène Aisberg (the 1st edition was in Esperanto!) 

• Met MECIPT 1 in its first years of operation, 
a Generation 1 computer conceived by 
Dr. Iosif Kaufmann with 
important contribution from
Prof. Győző Kovács.

How did all start?

1960

20212010

1961
In 2010 @ Szeged: The Museum of the 

History of Informatics Foundation
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• Built a Galena Crystal Radio… 
more like “Assembled a Galena 
Crystal Radio Detector Kit.”

• Read “La Radio? Mais c’est très simple!” by 
Eugène Aisberg (the 1st edition was in Esperanto!)

• Met MECIPT 1 in its first years of operation, 
a Generation 1 computer conceived by 
Dr. Iosif Kaufmann with 
important contribution from
Prof. Győző Kovács - - - - - 
- magnetic drum memory

• & the rest is history… 

How did all start?

In 2010 @ Szeged: The Museum of the 
History of Informatics Foundation

1960

20212010

1961
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General Purpose Computers:
• PC’s
• Laptops
• Mainframes
• Servers

Embedded Systems
• part of a larger unit
• provides dedicated service

to that real world unit
• billions of units produced yearly, 

versus millions of desktop units

Computers
Air Purifier
Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems
Battery chargers
Camcorders
Cell phones
Cell-phone base stations
Cordless phones
Cruise control
Curbside check-in systems
Digital cameras
Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
Environment monitor
Factory control
Fax machines
Fingerprint identifiers
Home security systems
Life-support systems

Medical testing systems
Modems
MPEG decoders
Network cards
Network switches/routers
On-board navigation
Pagers
Photocopiers
Point-of-sale systems
Portable video games
Printers
Satellite phones
Scanners
Smart phones
Smart ovens/dishwashers
Smart TV’s
Speech recognizers
Stereo systems
Teleconferencing systems
Temperature controllers
Theft tracking systems
TV set-top boxes
VCR’s, DVD players
Video game consoles
Washers and dryers
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Embedded System Architecture

6

HARDWIRED UNIT
• Application-specific logic
• Timers
• A/D and D/A conversion

MEMORY PROCESSOR

EMBEDDED SYSTEMUSER

I/O

Single-functioned
• Executes a single program, 

repeatedly
• Ideally never terminate

Non-User-Programmable
Based on programmable 
components (e.g. micro-
controllers, DSPs, SoC ….)
Tightly-constrained
Low cost, low power, small, fast…
Reactive and real-time
• Continually reacts to changes 

in the system’s environment 
• Maintain permanent interaction
• Are subject to external timing 

constraints (real-time)
Microcontroller / SoC



Signal Digitization
Magnitude digitization = QUANTIZATION
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Linear ADC Transfer Function 

𝑥𝑥 =
𝑉𝑉𝑖𝑖𝑖𝑖 − 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

Δ

Δ =
𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

(2𝑛𝑛 − 1)

(COMPRESSIVE SENSING  Adaptive sampling frequency)

(A/D Conversion  COMPRESSIVE SENSING  FP-ADC)
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Uniform VS Non-linear Quantization
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Floating-Point Quantization

•ADCM = mantissa ADC
•ADCE = exponent ADC
•PGA = Programmable 
               Gain Amplifier
•GCU = Gain Control Unit

𝑦𝑦𝑒𝑒 =

−(2𝑚𝑚) ⋅
Δ
2

 for 𝑥𝑥 < −(2𝑚𝑚) ⋅
Δ
2

 where Δ =
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2𝑚𝑚
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log2
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Δ
2

Groza V., High-Resolution Floating-Point Analog-to-Digital Converter. IEEE 
Transactions on Instrumentation and Measurement. ISSN 0018-9456, Vol. 50
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Transfer Functions
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Fig. 6. Normalized Absolute Quantization Error: Uniform ADC (thick line) and FP-ADC (thin line) 
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Fig. 7. Relative Quantization Error: Uniform ADC (thick line) and FP-ADC (thin line) 
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Electrical Machines Testing with DC Decay at Standstill 

Groza V., Biriescu, M., Liuba, G., Cretu, V., “Experimental Determination of Synchronous Machines Reactances from DC Decay at Standstill.” 
IMTC’2001, IEEE Instrumentation and Measurement Technical Conference, ISBN: 0-7803-6648-8, pp. 1954-1957, Budapest, Hungary, May 2001

𝑖𝑖 𝑡𝑡 =

𝐼𝐼0 𝑡𝑡 < 0

�
𝑖𝑖=1

𝑛𝑛

𝐼𝐼𝑖𝑖e
− 𝑡𝑡
𝑇𝑇𝑖𝑖 + 𝐼𝐼∞ 𝑡𝑡 ≥ 0  𝑛𝑛 = � 2 Open−Circuit field winding 

3 Short−Circuit field winding  

where 
 𝐼𝐼∞ = lim

𝑡𝑡→∞
𝑖𝑖(𝑡𝑡) =

E � R+𝑟𝑟𝑒𝑒 +
𝑟𝑟𝑜𝑜𝑜𝑜(𝑟𝑟𝑠𝑠 + 𝑅𝑅𝑎𝑎)
𝑟𝑟𝑜𝑜𝑜𝑜 + (𝑟𝑟𝑠𝑠 + 𝑅𝑅𝑎𝑎)

−1

�
𝑟𝑟𝑜𝑜𝑜𝑜

𝑟𝑟𝑜𝑜𝑜𝑜 + (𝑟𝑟𝑠𝑠 + 𝑅𝑅𝑎𝑎)
E, re

ido(t) Rrs

b

a

c

K

ron

•

•



12

Óbuda University, Budapest 2024

DC Decay Testing Method

Since Tdo1 >> Tdo2, for t > Tdo1, 

yo1(t) = ln[ido(t)-Ido∞]= -t/Tdo1+ ln(Ido1) 

   => yo1(0) = ln(Ido1) 
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Method Error Analysis
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Method Error Analysis

• First term = relative sampling error, introduced by the sampling 
circuits

• Second term = relative quantization error determined by the 
quantizer’s precision 
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15

Relative Sampling Error

For I∞ ≈ 0,
M reduces 
relative sampling 
error for 
i(t) < I1/3 
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16

Relative Sampling Error

For I∞ ≠ 0 M reduces 
relative sampling error 
for 
i(t) < I1/3
and better off if
i(t)/I∞ →1, i.e., t→∞ 
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Relative Quantization Error 

There is a minimum for 
i(t) ≈ 0.4·I1 acquired for 
t → 0 
=> flagrantly contradicts with 
the condition for minimizing 
the relative sampling error
i.e., t→∞ 
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18

Relative Quantization Error
Floating Point ADC vs   Fix Point ADC 

The highest precision is 
achieved if T1 is found from 
samples of 
I ={i(t) | i<I1/3} where 
• sampling errors are 

intrinsically minimized, 
• FP-ADC reduces relative 

quantization error
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19

d-axis Rotor Position 
& Short-circuited

• Complex virtual instrument (VI) determines 
the synchronous machine parameters and 
displays the results

• Snap-shot of results acquired with the 
testing stand from measurements performed 
on a synchronous machine at standstill with 
direct-axis rotor position and the field 
winding short-circuited 

• The tested machine had 76.5 MW active 
power and 10.5 kV rated voltage. 
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20

d-axis Rotor Position & Short-circuited
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21

q-axis Rotor Position & 
Open-circuited

Snapshot of results acquired with the 
testing stand from measurements 
performed on the 76.5 MW/10.5 kV 
synchronous machine at standstill with 
quadrature q-axis rotor position and the 
field winding short-circuited 
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• S. Tavoularis, Measurement in Fluid Mechanics, New York : Cambridge University Press, 2005
– One can measure pressure of a fluid inside of a pipe only if a sensor is inserted in it!

• Direct measurement of blood pressure is invasive, and, as such, it has a very limited clinical value.  
• Non-invasive blood pressure measurement is the only application where direct measurement 

methods from other fields could not be applied for practical and ethical reasons. 

• BP cannot be measured non-invasively but only estimated from indirect 
measurements (Korotkov sounds, cuff pressure oscillations, tonometry, etc.)

• It is the result of internal REGULATION
– It is an internally measured property
– Actually, you measure the measure in which the regulator responds to measurement!
– If taken several times, BP will “regress to the mean”

Heisenberg Uncertainty Principle in Blood Pressure Monitoring



Mean Arterial Pressure (MAP): 
The average value of the pressure over time

The DC Component of the Fourier transform of the pressure waveform

SBP, DBP, and MAP
• Cannot fully describe the blood pressure waveform (discard information)
• Provide a simple, easy to read glimpse into a patient’s condition, while 

still having some diagnostic value
• More readily obtainable (non-invasively)

Two pressure waveforms recorded from the same 
patient at different times.  SBP and DBP are the same, 
while MAP and overall shape are not.

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
1

𝑡𝑡2 − 𝑡𝑡1
�
𝑡𝑡1

𝑡𝑡2

𝑝𝑝(𝑡𝑡)𝑑𝑑𝑑𝑑
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• Systolic Blood Pressure: Pressure in the artery as heart contracts 
(maximum)

• Diastolic Blood Pressure: Pressure in the artery as heart relaxes 
(minimum)

The Measurand = Pulse pressure in arteries
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Auscultation - Background

SACI 2013 24

• Compression of the brachial artery using 
an elastic, inflatable cuff;

• Recording of blood pressure levels using 
a manometer and a stethoscope

SP1/(DP1?) = (SP2?)/DP2

SP/DP= SP1/DP2

• Korotkov sounds (generated by the turbulent flow of blood 
and the oscillations of the arterial wall) are heard during 
auscultation over the brachial artery distal to the cuff;

• When the first sound is heard, a reading is recorded and taken 
to be systolic pressure and when the last sound is heard a 
reading is taken to be diastolic pressure.

Wilmer W. Nichols, Michael F. O'Rourke: McDonald's Blood Flow in Arteries, 4th Edition – 
Fig. 6.10 (A), page 132
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Model-based Oscillometric BP Estimation

Oscillometric Algorithms:

SACI 2013 25

• Maximum amplitude algorithm (MAA)
• Linear Approximation Algorithm
• Derivative Oscillometry
• Neural network method
• Pulse morphology method
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26

• The coarse quantization, accomplished by the ADCE, provides a rough value of the current value of the input signal, which is 
directly fed to the FPGA for encoding the exponent.

• It is also being inputted to the predictive circuitry (PRED) in the FPGA to forecast the future value of the quantized signal to be 
applied to the DAC.

• The  Gain Control Unit sets the input DAC setting based on the prediction, for the generation of the analog representation of the 
rounded-off exponent, X’(t).

• After subtraction from the original signal, the difference signal ∆X’(t) will be bound by 0< ∆X’(t)<q, where q is the quantization 
step.

• The difference signal ∆X’(t) is amplified using an amplifier with constant gain, to expand the ADC input signal to the full ADCM 
range.

• The gain of the amplifier is thus chosen to be equal 
to k = Vmaxin/q

• The ADCM output is sent to the FPGA to formatting 
the mantissa.

• If the acquired signal falls in the same range as its 
prediction, the conversion result is delivered 
immediately; if not, the mantissa is acquired again 
with the DAC input reset to the most recently 
acquired exponent.

• As long as the input signal fluctuates within one 
single ADCE quantization step, much of the system is 
kept in its static state, allowing for the statistical 
properties of the measured signal to dominate.

• Thus, in general, this system will require 1 < n < 2 
measurements on average. How close it gets to a 
single measurement per sample will depend on 
thestatistical properties of the measured signal itself. 

Predictive Differential Floating-Point Analog-to-Digital Converter

Groza V., Dzerdz B., MEASUREMENT Journal of the International 
Measurement Confederation IMEKO, ISSN: 0263-2241, Elsevier Science, 
Special Issue on ADC Modelling and Testing, Vol. 35, 4:139-151
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Conclusions 

• Measurements of high-power synchronous machines are 
inefficient with classic methods 

• Solution: standstill time response (SSTR) –
  DC DECAY TESTING METHOD
• Analysis of the relative method error 
 => designed and built a microcomputer-based testing stand 

provided with a floating-point quantization sub-system
• Results from test of a synchronous machine of 76.5 MW active 

power and 10.5 kV rated voltage are presented
• Con: cannot find parameters’ dependency with rotation
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