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Abstract: The paper deals with the identification of a batch biotechnological process using 
dynamic neural networks. The process considered in the paper is the growth process of 
Candida lipolytica population on an ammonium sulfate substrate and its model includes a 
mean age equation. The neural network used for identification is trained at every hour, 
based on the experimental data from the process and the process parameters are given by 
the neural network weights determined at every training step. The mean age model has 
been validated based on the fact the parameters of the mean age equation are the same 
with the ones from the other model equations (biomass, substrate and product).    

1 Introduction 
The biotechnological processes are very complex and strong non-linear. That is 
why the traditional methods for modeling and control do not offer good results. 
The problems are more difficult in the case of the discontinuous biotechnological 
processes. Unlike the continuous processes, the batch processes are totally isolated 
from the outside environment. During the process no additional substrate is fed 
from the outside, the microorganisms population growing only from the substrate 
supplied at the beginning of the batch. A number of uncertainties arises right from 
the beginning of the process with respect to the substrate preparation and nature 
(the composition of the natural substrates is not known). 

A method to control a biotechnological process is based on the physiological state 
of the cells, using the mean age as indicator [1], [8]. If the aim of the process is to 
obtain a reaction product, than someone can consider that each species is 
characterized by an optimal mean age, corresponding to the maximum 
productivity. Basically, the control method consists in command determining, so 
that the microorganisms population to be brought to an age accordingly to the 
maximum productivity. In [8] is developed the theory of the age and mean age 
models for a microorganisms population. 



The paper deals with the identification of a mean age model for the growth 
process of Candida lipolytica population on an ammonium sulfate substrate, 
which is a batch process. The validation of mean age equation is based on the fact 
that in this equation the same parameters from the equations of biomass, substrate, 
and product do appear. As a consequence, a correct identification of the equations 
mentioned above leads to an age equation, which expresses the real evolution of 
the mean age. For the identification, a dynamic neural network was used. It has 
been trained at every hour, based on the experimental data from the process. The 
model parameters represents the weights of the neural network.   

The paper structure is as follows: the second section presents the model of the 
growth process of Candida lipolytica population on an ammonium sulfate 
substrate, the firth section deals with a brief presentation of the dynamic neural 
networks, the fourth section presents the identification procedure, in the fifth 
section the simulation results are shown and the last is dedicated to the 
conclusions. 

2 The mean age model of an enzyme biosynthesis 
process 
In this paper the growth process of Candida lipolytica population on an 
ammonium sulfate substrate is considered. The process model is given by the 
following reaction scheme [4]: 
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where S is the substrate, E is the enzyme, S-E represents the enzyme-substrate 
complex, M is a metabolite and }2,1,1{, +−+∈iik  are the kinetic rate constants. 

Two assumptions are made about the process variables: 

1. The concentration of the total enzyme Ec(t) which is the sum of enzyme-
substrate complex Cp(t) and sole enzyme E(t), is proportional to the 
biomass concentration X(t): 
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2. The growth rate of the microorganisms population  is proportional 

to the rate of metabolite formation : 
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The model is given by the following equations: 
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In equations (4) – (6), which describe the dynamics of the growth process of 
Candida lipolytica population on an ammonium sulfate substrate, µ is the specific 
growth rate, ν represents the specific consumption rate and KS and Km are 
saturation constants. The model is complete if the mean age equation is added:  
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where m(t) is the mean age of the microorganisms population. 

The equation (8) was determined from the notions provided by Ranta [8]. 

1. the total biomass concentration  
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2. the first and nth moments 
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3. the mean age 
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where τ is the age coordinate.  

Based on equations (9) – (11) the mean age derivative can be determined: 
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and taking into account the fact that the process is batch, equation (8) does result.  



3 The parameter identification using recurrent 
neural networks  
The neural networks can be classified in two categories: feedforward and recurrent 
networks [7]. In feedforward neural networks the processing elements are 
connected such that all signals are going in a single direction, from the input to the 
output units. The recurrent networks contain both feedforward and feedback paths. 

The feedforward networks have been successfully applied to the dynamic systems 
identification. For the representation of a dynamic system the use of the delay 
lines has been adopted. This method involves the consideration of the current and 
previous inputs and outputs of the system as inputs of the network. The system 
output at the next moment is used as training signal. One of the biggest drawbacks 
of this method consists in the great number of calculus generated by the number of 
neurons from the input layer. As a consequence the identification is extremely 
sensitive to the external noise.  

Due to their structure the recurrent networks don’t have the same drawbacks. They 
can be classified in total or partial recurrent networks and can have two kind of 
connections: feedforward and feedback, all connections being trainable. The main 
structure of the partial recurrent networks is of feedforward type. The feedback 
connections contribute to the storage of the output layer statements that are not 
trainable. 

Jordan proposes a structure, where the feedback connections are restricted from 
the output to the hidden layer, such that an additional layer named State Layer is 
created [3]. In this layer, each neuron gets as input an output signal of the neural 
network and its own output at the previous moment in the regime “own feedback”. 
The structure proposed by Jordan is capable to store the information regarding the 
previous outputs for an infinite period.  
Elman suggests a neural network with a very restricted feedback [2]. The 
recurrence is given by a Context Layer which makes a copy of the internal states 
of the hidden layer and then the internal states are introduced in the network at the 
next moment. The context neurons have linear activation functions, such that they 
don’t produce signal processing (as the inputs neurons do). They do behave as 
memories. The recurrent weights from the hidden layer to the context one are set 
to 1, such that they permit the training using the backpropagation algorithm. 

The Functional Links Neural Network (FLNN) has been proposed as an 
alternative architecture for the multilayer Perceptron network (MLP) for solving 
approximation problems of non-linear functions and classification problems. 
FLNN forward propagates the input variables and differs from the MLP network 
because it doesn’t contain internal layers [5]. They are replaced by a number of 
knots named functional links. The functional links perform supplementary 
transformation of the network input space giving supplementary inputs to the 



network neuron. Basically, the functional links extend the original input space in a 
superior dimension aiming to reduce the loading of the computing unit in the 
training phase of the neural network. The functional link acts on an element of the 
input vector or on every input vectors generating a set of linear independent 
functions. Then these functions are evaluated. One can notice no new information 
has been introduced in the process. However the representation was certainly 
increased and the separation becomes possible in the increased space. As a 
consequence, both the training period and the training error are improved.  

4 The experimental identification of the bioprocess 
The identification scheme is given in figure 1. It contains the following elements: 
linear neurons; elements with internal dynamics (integrators); functional links 
(multiplying type). The scheme from figure 1 is used for the identification of the 
process described by equations (4) – (6), presented in section 2. 
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Fig. 1. The general scheme of the identification process 

For the parameter adjustment the square error criterion between the experimental 
data and the model outputs is defined: 
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where: , with me X X= − mX - the measured data and X - the model outputs. The 

parameter vector T
S Mp k k= [µ ν ε ]  at the step k is calculated by a gradient 

method: 
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The sensitivity of the biomass X with respect to each parameter pi ( iXps ) is given 

by equation (16) [6]: 
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Taking into account equations (15) and (16), the equation (14) becomes: 

0
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where h is the length of the searching step. 
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Fig. 2. The block for the calculus of the biomass sensitivity with respect to the 
parameter µ 

One can notice that although the sensitivities of each state variable must be 
calculated with respect to the parameter vector p, in the equation where the 
parameters are adjusted the biomass sensitivities in relation with the parameter 
vector p do appear. The computing mechanism of the biomass sensitivity with 
respect to the parameter µ is presented in figure 2. The other sensitivities 
(

MXkS ,
SXkS , XS ε , XS ν ) are calculated by similar blocks. The equations that define 

the sensitivities mentioned above are presented in appendix 1. 
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Fig. 3. The dynamic neuronal network structure 

The neural network structure used for the bioprocess identification is of Elman 
type and is presented in figure 3. It contains four linear neurons to which, by the 
weights adjustment, the process parameters are obtained. The weight adjustment 
that determines the parameter ν (to the neurons 3 and 4) is synchronous done. 

5 Simulation results 
The simulation begins with a parameter set randomly chosen. After 10 hours of 
functioning, the adjustment procedure of the parameters does begin. The 
adjustment is done at every hour. The one hour period has been chosen based on 
two elements: the biotechnological processes are very slow (the sample period in 
the case of the process considered in the present paper is about 0.1 hour) and the 
experimental data are difficult to obtain (by taking proves and lab analyses). In 
one hour a new set of parameters is determined (by network training), based on 
the previous parameter set. In figure 4 are given the evolutions of biomass, 
substrate, enzyme-substrate complex and the mean age obtained with the 
identification procedure presented in section 3. 

The smallest errors are obtained in the case of the biomass because it is the 
variable according to which the parameter adjustment is made. One can notice a 
good convergence of the model variables evolutions with respect to the real ones. 
The convergence is better if the parameter adjustment is done on a bigger horizon. 
The validation of the mean age evolution can be considered correct because in the 
mean age equation there are the parameters from the other model equations 
(biomass, substrate and product), which have been adjusted to the real values. 
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Fig. 4. The comparison between the evolution of the process and model variables 
(process variables – continuous line and model variables – dotted line) 

Conclusions 

The paper clearly presents the difficulty to obtain a “good model” for a 
biotechnological process. The difficulty is bigger if the model includes the mean 
age of the microorganisms population.  



The authors tried to show that a dynamic neural network is a good tool to model 
such a complex process. In fact, the process identification consists in the 
determining the process parameters, which are weights of the dynamic neural 
network. The convergence of the parameter values to the real ones is very good. It 
becomes better if the time horizon for the parameter adjustment is bigger. 

The parameters of the mean age equation are also determined. They are the 
parameters of the other equations of the model, such that the validity of the mean 
age equation is assured. 
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Appendix 1 – The sensitivity functions 
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