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Abstract & Content 

“Neuroinformatics, Neural networks and Neurocomputers “ – the N3 (group)  of   

science and technology 

Neuroinformatics offer a tremendous amount of data and knowledge about how the human 

brain and the nervous system work. 

Many brain information processing principles can be now implemented in novel Neural 

network computational models.

The latter ones have inspired the development of neuromorphic hardware chips and 

Neurocomputers, characterised by much low power consumption, massive parallelism and 

fast processing. 

---------------------------

1. Seven challenges in data science and CI and the role of neural networks

2. Future opportunities for new technologies and systems based on N3.
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1. Seven challenges in Data Sciences and CI and the role of neural 

networks 

1. Learning from (big) data -> neural networks and deep NN

2. Explainability (extracting rules, associations) (explainable AI) → fuzzy logic/ neuro-fuzzy systems 

3. Evolvability → evolving connectionist systems (ECOS) and  brain-inspired SNN (NeuCube).

4. Precision health → personalised modelling with ECOS and NeuCube

5. Multiple modality of data (e.g. images, genetic, clinical, longitudinal, etc.) → NeuCube.

6. Reduced power consumption/sustainability → neuromorphic (brain-inspired) computers

7. Human-machine symbiosis -> new human-machine interfaces, BMI

mailto:nkasabov@aut.ac.nz


Tractica, White paper, 2017

The dominant role of neurocomputation technologies (Deep Learning) in  CI 

http://www.pwc.com/AI


Challenge No.1: Learning from (BIG) data 

→ artificial neural networks and deep NN    

• ANN are computational models that mimic the 

nervous system in its main function of adaptive 

learning and generalisation. 

• ANN are universal computational models

• 1943, McCulloch and Pitts neuron 

• 1962, Rosenblatt - Perceptron

• 1971- 1986, Amari, Rumelhart, Werbos: 

Multilayer perceptron 

• Many engineering applications.

• Early NN were ‘black boxes’ and also - once 

trained, difficult to adapt to new data without 

much ‘forgetting’.  

nkasabov@aut.ac.nz
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The BIG data challenge:  Deep Convolutional Neural Networks
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Deep NN are excellent for vector, frame- based data (e.g. image recognition), but

not for time-space data and for knowledge extraction.

mailto:nkasabov@aut.ac.nz


Early deep convolutional NN in computer vision inspired by the brain
Spatial features are represented (learned) in different layers of neurons

Fukushima's Cognitron (1975)  and Neocognitron (1980) for image processing
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Latest DNN: Transformers and ChatGPT

Transformers are designed to process sequential 

input data, such as natural language, with 

applications towards tasks such 

as translation and text summarization. 

Transformers process the entire input all at once. 

The attention mechanism provides context for any 

position in the input sequence. 

Transformers allow training on larger datasets. 

This led to the development of pretrained 

systems such as GPT (Generative Pre-trained 

Transformer), which were trained with large 

language datasets, such as the Wikipedia Corpus 

and Common Crawl, and can be fine-tuned for 

specific tasks.

Transformers are NOT suitable for explanation of 

the solution or for on-line adaptation of new data. 

They are not suitable for spatio-temporal data 

either. 
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https://en.wikipedia.org/wiki/Statistical_machine_translation
https://en.wikipedia.org/wiki/Automatic_summarization
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)#Self-attention
https://en.wikipedia.org/wiki/Transfer_learning
https://en.wikipedia.org/wiki/Transfer_learning
https://en.wikipedia.org/wiki/Generative_pre-trained_transformer
https://en.wikipedia.org/wiki/Wikipedia
https://en.wikipedia.org/wiki/Common_Crawl
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Challenge No.2: Explainability

→ Fuzzy logic and neuro-fuzzy systems 

• Fuzzy logic (1965) represents information uncertainties and 

tolerance in a linguistic form (Lotfi Zadeh (1920-2018)  

– fuzzy rules, containing fuzzy propositions;

– fuzzy inference 

• Fuzzy propositions can have truth values between true (1) 

and false (0), e.g. the proposition  “washing time is short” is 

true to a degree of 0.8 if the time is 4.9 min, where Short is 

represented as a fuzzy set with its membership function 

• Fuzzy rules can be used to represent human knowledge 

and reasoning, e.g. “IF wash load is small THEN washing 

time is short”. Fuzzy inference systems: Calculate outputs 

based on input data an a set of fuzzy rules

• Contributions from: T.Yamakawa, L.Koczy, Imre Rudash

and many others... 

However, fuzzy rules need to be articulated in the first instance, 

they need to change, adapt, evolve through learning, to reflect 

the way human knowledge evolves.  

Short    Medium          Long

0.8

4.9 min                                             

Time [min]

Lotfi Zadeh (1920-2018) 
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Challenge No.3: Evolvability (+ explainability) 

→ Evolving connectionist systems (ECOS)

• Neuro-fuzzy systems that evolve (develop) their structure and 

functionality from data 

• Rules (knowledge) can be extracted from the models, e.g. 

IF Input 1 is High and Input 2 is Low

THEN Output is Very High (static knowledge)

N. Kasabov, EFuNN, IEEE Tr SMC, 2001, 

N.Kasabov, Evolving connectionist systems, Springer, 2007, (first edition 

2003)  

Inputs outputs

Evolving  

nodes rj

P.Angelov, D.Filev, N Kasabov
24 Centuries after Aristotle, now we can automate                                            (co-editors)                    
the process of rule extraction and knowledge discovery                               Q1 (JSR), IF2.5
from data! 
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Example: Local, adaptive renal function diagnostic system based on DENFIS

Marshal, Song, Ma, McDonell and Kasabov, Kidney International, May 2005)

• A real data set from a medical 

institution is used here for 

experimental analysis (M. 

Marshal et al, 2005) The data 

set has 447 samples, collected 

at hospitals in New Zealand and 

Australia.

• Each of the records includes six 

variables (inputs): 

– age, 

– gender, 

– serum creatinine, 

– serum albumin, 

– race and 

– blood urea nitrogen 

concentrations, 

– output - the glomerular 

filtration rate value (GFR). 
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The NeuCom software environment (www.theneucom.com) 

including ECOS

• NeuCom is a generic environment,

that incorporates 60 traditional and

new techniques for intelligent data

analysis and the creation of intelligent

systems

• Methods for feature selection

• Methods for classification

• Methods for prediction

• Methods for knowledge extraction

• EFuNN and ECF

• DENFIS

• Fast data analysis and visualisation

• Fast model prototyping

• A free copy available for education

and research from

www.theneucom.com

ECOS methods are used in 2000+

specific methods and systems cross 50+

countries

http://www.theneucom.com/
http://www.theneucom.com/


Still challenge No.3: What about learning Time in the evolving models? 
Modelling evolving processes in Time and Space

Different types of time-space data (TSD) 

- Temporal (e.g. climate, financial data, gene expression)

- Spatio-temporal with fixed spatial location, (e.g. brain data; seismic; GPS)

- Spatio-temporal with changing locations of the spatial variables (e.g. moving objects) 

- Spectro-temporal data (e.g. radio-astronomy; audio; speech; music)  

Different characteristics of TSD: 

- Sparse features/low frequency (e.g. climate data; ecological data; multisensory data); 

- Sparse features/high frequency (e.g. EEG brain signals; seismic data); 

- Dense features/low frequency (e.g. fMRI; gene expression data); 

- Dense features/high frequency (e.g. radio-astronomy data). 

The challenge: To better analyse, model and understand Time-Space data and 

the processes that generate these data.   

nkasabov@aut.ac.nz

Evolving  processes in Nature: 

• Evolutionary (population/generation) processes 
• Brain cognitive processes  
• System information processing (environment) 
• Information processing in a cell 
• Molecular information processing (genes, proteins)
• Quantum information processing

“ Времето е в нас и ние сме във времето“ 

“Time lives inside us and we live inside Time.’

Vasil Levski-Apostola (1837-1873)

Bulgarian educator and revolutionary

mailto:nkasabov@aut.ac.nz
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The brain (80bln neurons, 100 trillions of connections, 200 mln years of 

evolution) is the ultimate learning machine

Three, mutually interacting, memory types: 

- short term (membrane potential); 

- long term (synaptic weights);

- genetic (genes in the nuclei).

Temporal data at different time scales:

- Nanoseconds: quantum processes; 

- Milliseconds: spiking activity;

- Minutes: gene expressions;

- Hours:  learning in synapses;

- Many years: evolution of genes.

Knowledge is represented as deep spatio-temporal patterns that can 

evolve/adapt over time.  

The brain “meets” all 7 data challenges, why not use it for brain-inspired AI !!

Inspiration from the brain --> brain-inspired SNN 

Neuroinformatics provides knowledge about the human brain,  the most sophisticated 

product of the evolution, a live-long learning system for knowledge representation.      

Kasabov, N., Time-Space, Spiking Neural Networks and Brain-

Inspired Artificial Intelligence, Springer (2019),  

https://www.springer.com/gp/book/9783662577134

https://www.springer.com/gp/book/9783662577134


Knowledge of seeing an object and grasping it is learned incrementally as a deep 

spatio-temporal trajectory of connections between clusters of neurons in the  

brain  

Deep serial processing of visual stimuli in humans for image classification and action. 

Location of cortical areas: V1 = primary visual cortex, V2 = secondary visual cortex, V4 

= quartiary visual cortex, IT = inferotemporal cortex, PFC = prefrontal cortex, PMC = 

premotor cortex, MC = motor cortex. 

L.Benuskova, N.Kasabov, Computational neurogenetic modelling, Springer, 2007 
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Spiking Neural Networks (SNN) capture time   

Information processing  principles in neurons and neural 

networks:

– Trains of spikes 

– Time, frequency and space

– Synchronisation and stochasticity 

– Evolvability…

Spiking neural networks (SNN)

– Leaky Integrate-and-fire

– Probabilistic model

– Neurogenetic model

They offer the potential for: 

– Spatio-temporal data processing

– Bridging higher level functions and “lower” level 

genetics

– Integration of modalities 

SNN open the field of brain-inspired (cognitive, 

neuromorphic) computing.

“The goal of brain-inspired computing is to deliver a scalable 

neural network substrate while approaching fundamental 

limits of time, space, and energy,” IBM Fellow Dharmendra 

Modha, chief scientist of Brain-inspired Computing at IBM 

Research, 
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Image Processing using evolving spiking neural networks and Gabor filters.
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(Wysoski, S., L.Benuskova, N.Kasabov, Evolving Spiking Neural Networks for Audio-Visual Information Processing, 

Neural Networks, 23, 7, 819-835, 2013).
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The NeuCube Architecture  

nkasabov@aut.ac.nz www.kedri.aut.ac.nz

Kasabov, N., NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and 

Understanding of Spatio-Temporal Brain Data, Neural Networks,  vol.52, 2014. 

mailto:nkasabov@aut.ac.nz
http://www.kedri.aut.ac.nz/


Deep learning in NeuCube 

Spike Trains 

Entered to the 

SNNc

Neuron Spiking 

Activity During the 

STDP Learning

Creation of Neuron 

Connections During 

The Learning

The More Spike 

Transmission, The 

More Connections 

Created

nkasabov@aut.ac.nz             www.kedri.aut.ac.nz/neucube/
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• A PM (transductive) model is created on a sub-set of neighbouring

data to each input vector. A new data vector is situated at the centre

of such a sub-set (here illustrated with two of them – x1 and x2), and 

is surrounded by a fixed number of nearest data samples selected 

from the training data D and generated from an existing model M 

(Vapnjak)

• The principle of “What is good for my neigbours is good for me”

• Problems: 

- Which variables, weighted or not weighted ? 

- How many neighbours?

- What distance measure?

- Which model? 

Parameter and feature optimization.

Challenge No.4: Precision health -→ personalised modelling with NN 



PM based on ECOS and NeuCube result in a better diagnostic and 

prognostic accuracy and a better explanation  
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Example Applications PM 
Other AI 
methods 
accuracy

Schizophrenia
Predicting formal diagnosis in 
next six months using gene 
expression measures from blood 
test

98% 92-97.5%

Mindfulness Treatment
Predicting response to depression 
treatment using EEG data

73%​
48.5-
58.5%

Methadone
Predicting treatment programme 
outcome using EEG data​

91%​ 60-63%

Stroke
Predicting stroke events using 
patient and environmental data​

94%​
67.5-
87.5%

AD/MCI/normal
Prediction 2 years ahead 

91%
40% 

(LSTM)

Knee pain prediction 12 

months after surgery using 

only pre-operative data

92% 66%

mailto:nkasabov@aut.ac.nz
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Challenge No.5: Multiple modalities → new methods are needed

mailto:nkasabov@aut.ac.nz


EEG Recording

fMRI Recording

Step1:

STBD 

measurement  

Step2: 

Encoding

STBD Encoding 

into Spike Trains

Step3: Variable 

Mapping into 3D SNNc

Talairach Template 

fMRI Voxels

Step4:STDP learning 

& Dynamic clustering

Neuron Connections

Evolving Neuronal Clusters 

Step5: Analysis of the connectivity of the trained 3D SNNc as dynamic spatio-temporal clusters in the STBD, related to brain processes 

EEG and fMRI integrated modelling in NeuCube 
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Z.Doborjeh, N. Kasabov, M. Doborjeh & Alexander Sumich, Modelling Peri-Perceptual Brain Processes in a Deep Learning 

Spiking Neural Network Architecture, Nature, Scientific REPORTS | (2018) 8:8912 | DOI:10.1038/s41598-018-27169-8; 

https://www.nature.com/articles/s41598-018-27169-8

https://www.nature.com/articles/s41598-018-27169-8


Personalised modelling for integrated static and dynamic data using 

NeuCube 

N.Kasabov, V.Feigin, Z.Hou, Y.Chen, Improved method and system for predicting outcomes based on 

spatio/spectro-temporal data, PCT patent WO2015/030606 A2, US2016/0210552 A1, Publication date: 

21 July 2016.

nkasabov@aut.ac.nz



Challenge No.6: Reduced power consumption/sustainability
From von Neumann principles and Atanassov’s ABC to Neuromorphic Computers  

- The computer architecture of John von

Neumann separates data and programmes

(kept in the memory unit) from the

computation (ALU); uses bits. First machine

ABC by Atanassov and Berry.

- A Neuromorphic architecture integrates the

data, the programme and the computation in

a SNN structure, similar to how the brain

works; uses spikes (bits at times) (e.g.

S.Furber SpiNNaker; IBM True North; Akira;

ETH/EZH Indiveri)

- Intel Loihi:

- A quantum computer uses q-bits (bits in a

superposition) (IBM D-Wave).

nkasabov@aut.ac.nz

N. Sengupta et al, (2018), From von Neumann architecture and Atanasoffs ABC to Neuromorphic Computation and Kasabov’s

NeuCube: Principles and Implementations, Chapter 1 in: Advances in Computational intelligence, Jotzov et al (eds) Springer 2018.



Neuromorphic hardware 

High speed and  low power consumption. Energy and 

pollution sustainable! 

Carver Mead (1989): A hardware model of an IF neuron:

The Axon-Hillock circuit. 

SpiNNaker (Furber, S., To Build a Brain, IEEE Spectrum, 

vol.49, Number 8, 39-41, 2012).

INI Zurich SNN chips (Giacomo Indiveri)

Silicon retina (the DVS) and silicon cochlea (ETH, Zurich, 

Toby Delbruck))

The IBM True North (D.Modha et al, 2016): 1mln neurons 

and 1 billion of synapses

FPGA  SNN realisations (McGinnity, Ulster and NTU)

Intel Loihi

nkasabov@aut.ac.nz nk.kasabov@ulster.ac.uk

mailto:nkasabov@aut.ac.nz
mailto:nk.kasabov@ulster.ac.uk
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NeuCube development environment for SNN system design  

mailto:nkasabov@aut.ac.nz
http://www.kedri.aut.ac.nz/neucube/


Challenge No.7: Human– Machine symbiosis   

→ new brain - machine interfaces (BMI) 

Knowledge-based human-machine interaction and symbiosis based on deep learning, 

knowledge representation and knowledge transfer with BI-SNN architectures 

(www.darpa.mil/program/explainable-artificial-intelligence)
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Brain Machine Interfaces using Brain-Inspired SNN 
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Brain-Computer Interfaces (BCIs)  are systems trained on human brain data (e.g. EEG) for 

humans to  communicate directly with computers or external devices through their brains 

BI-BCI are designed using a brain template.  



IICT- BAS

NEMO-BMI, HORIZON-EIC-2021-PATHFINDERCHALLENGES-01-02, France, Neth., Swiss, Bulgari



NEMO-BMI using N3

Our team

Prof. Petia Koprinkova-Hristova Prof. Nikola Kasabov

Team leaders

Assistant Simona Nedelcheva Dimitar Penkov

Svetlozar Yordanov

Programmers

MSc Eng. Alexandar Banderov

Researchers
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2. Future opportunities for new technologies and 

systems based on N3

AI in Medicine ​and Health

Molecular research: DNA and gene data 

analysis; vaccine designs; microbiology;  …

Precision medicine : Machine learning for 

personalised predictive modelling

Global health data analysis: pandemics; 

population health.

Image analysis: brain images; EEG, fMRI, 

DTI,…

Robotics: 

- surgical robots;

- patient care robots

- Nano robots (drug delivery in the body)

- Brain implants 

Brain-machine interfaces (BMI) for 
neurorehabilitation

Many other
https://www.pwc.com/gx/en/industries/healthcare/publications/ai-

robotics-new-health/transforming-healthcare.html



Future opportunities for new technologies and systems

based on the N3
Brain data modelling 

Deep learning and deep knowledge representation of EEG data 

Brain Disease Diagnosis and prognosis based on EEG data  

Deep learning and deep knowledge representation of fMRI data 

Integrating time-,space and orientation . 

Audio-visual data and brain computer interfaces

Audio and visual information processing in the brain and its modelling

Deep learning and modelling of audio and visual and multimodal audio-visual data in BI-SNN 

Brain-computer interfaces (BCI) using BI-SNN 

SNN in Bio- and Neuroinformatics

Computational modelling and pattern recognition in Bioinformatics

Computational neurogenetic modelling

Computational framework for personalised modelling. Applications in Bioinformatics.  

Personalised modelling for integrated static and dynamic data. 

Applications in neuroinformatics

Application for multisensory streaming data     

Cybersecurity

Environmental predictive modelling

Predicting earthquakes and nature disasters 

Financial and economic data        

Software for neuromorphic computer systems  
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Prof. Nikolay Gabrovsky

Institute Pirogov Sofia  and BAS

Example: N3 in Neurosurgery 

Absolute and the cumulative number of 

publications involved neurosurgery and 

artificial intelligenceAI in Neurosurgery: https://doi.org/10.3934/Neuroscience.2021025) 

AIMS Neuroscience, 8(4): 477–495. 

https://doi.org/10.3934/Neuroscience.2021025


Example: N3 in Finance and Economics 

Iman  AbouHassan, N. Kasabov, G. Popov and R. Trifonov, "Why Use Evolving Neuro-Fuzzy and Spiking Neural 

Networks for incremental and explainable learning of time series? A case study on predictive modelling of trade 

imports and outlier detection," 2022 IEEE 11th International Conference on Intelligent Systems (IS), Warsaw, 

Poland, 2022, pp. 1-7, doi: 10.1109/IS57118.2022.10019673.

Because:

1. Learning from (big) data

2. Explainability

3. Evolvability for life-long learning

4. Personalised modelling

5. Multiple modality of data Evolving clustering for predictive modelling with DENFIS

6. Much less power when

on a neuromorphic hardware

7. New brain machine interfaces

Predictive modelling and dynamic

interaction graph extraction from

a NeuCube model →

interaction dynamic graph

iabouhassan@tu-sofia.bg

mailto:nkasabov@aut.ac.nz
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Quantum-inspired neurocomputation    

Quantum information principles: superposition; entanglement, interference, parallelism 

(M.Planck, A.Einstein, Niels Bohr, W.Heisenberg, John von Neumann,  E. Rutherford)  

• Quantum bits (qu-bits) 

• Quantum vectors (qu-vectors)

• Quantum gates

• Applications:

– Specific algorithms with polynomial time complexity for NP-complete problems (e.g. 
factorising large numbers, Shor, 1997; cryptography) 

– Search algorithms ( Grover, 1996), O(N1/2) vs O(N) complexity)

– Quantum associative memories 
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Nikola Kasabov      Roumen Trifonov, TU        Petia Koprinkova, BAS       Nikolay Gabrovsky     Iman AbouHassan, TU  

(Leading organisers)

For contacts: N.Kasabov (nkasabov@aut.ac.nz)  or  Ms Iman AbouHassan (iabouhassan@tu-sofia.bg)

The N3-BG group (Neuroinformatics, Neural networks and 

Neurocomputers)

https://www.knowledgeengineering.ai/n3-bg

Established in 2022.

New members are welcome. It is free and informative !  

mailto:nkasabov@aut.ac.nz
mailto:nkasabov@aut.ac.nz
mailto:nkasabov@aut.ac.nz
https://www.knowledgeengineering.ai/n3-bg
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17. KEDRI R&D Systems are available from: http://www.kedri.aut.ac.nz

Thank YOUI!
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