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• User location known by the network only when the smartphone is active

• User location known at the granularity of the base station
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• The operator has the legal obligation to keep user records for 1 year

• User data is also used for network management and troubleshooting
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• Per user data

• The original format of the operator data

• Very heterogeneous frequency, related to the user activity

• More and more points per user as we go from 2G to 5G

• Difficult to access from a legal point of view (especially post GDPR)

• Not always very precise
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• Per base station data

• Aggregated data for all the users associated during a given time

• A format which can be acquired from operators (Fluxvision, GeoStatistics)

• Periodic, controlled data collection

• Vague mobility information (flows)

• Spatial granularity depends on the geographical area
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CDR
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NSD
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• GPS data collected from 4 voluntary users

• Orange collected data shared with user agreement

L. Bonnetain et al. - "TRANSIT: Fine-grained Human Mobility Trajectory Inference at Scale with Mobile Network Signaling Data", Transportation Research Part C: 

Emerging Technologies.
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• Trajectory using CDR only (user data logs)
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• Trajectory using NSD (control data logs)
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• Reconstructed trajectory (TRANSIT framework)
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• Orange data for 6 major cities in France

• TIM Big Data Challenge data for 4 cities in Italy

A. Furno et al. - "Mobile Demand Profiling for Cellular Cognitive Networking", IEEE Transactions on Mobile Computing
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• Temporal profiles
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• Temporal profiles
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• Temporal profiles
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• Outlier detection

Halloween night, Milan patron saint day, 

opening of opera season at La Scala, Christmas 

holidays and events, several public holidays, 

football matches of AC Milan and Inter Milan, 

one collection probe crash, etc.
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• Orange data for 6 major cities in France

• TIM Big Data Challenge data for 4 cities in Italy

• Methodology applied several times on Orange and SFR data

A. Furno et al. - "A Tale of Ten Cities: Characterizing Signatures of Mobile Traffic in Urban Areas", IEEE Transactions on Mobile Computing
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• Spatial profiles = signatures
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• Baseline signatures (residential areas)
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• Office signature
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• Other signatures
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• Other signatures



3. Land use detection
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• Application on SFR data to study the impact of Covid lockdown

Data-driven mobility analysis and modeling: Typical and con! ned life of ametropolitan population 11

Fig. 7. Map visualization of INSEEclass labels.

To label the classes using known land-use categories, weuse the INSEEclass labels as a reference. Based on census

data, INSEEde! nes threedi" erent typesof labels: activity, residential and diverse. IRISlabeled as residential havea

population that is generally between 1,800 and 5,000. In terms of habitat types, they are homogeneousand their limits

arebased on themajor cuts in the urban fabric (main roads, railways, waterways, etc.). Activity IRIShavemore than

1,000employeesand haveat least twice asmany salaried jobsas the resident population. Finally, thediverse category

covers large, speci! c areas that are sparsely inhabited and havea large surface area (leisureparks, port areas, forests,

etc.).

In Figure7, wecan see that residential IRISin green arepredominant in the INSEE labeling. This corresponds to

about 87%of IRISin Paris. Activity IRIS, in red, are less prevalent, about 9%. They aremainly in thewest center and

occupied by main train stations, while someother small IRISare scattered all over Paris. Then, diverse IRISs (denoted

asothers in theFigure), in blue, cover two largeParisian parks, theSeine river and other smaller parks.

(a) Before. (b) During.

Fig. 8. SFR-IRIS labels beforeand during lockdown.

In order to label the SFR-IRIS in our study, we superimpose the classes obtained with the INSEE labels to those

obtained by our clustering approach. A classwill be labeled asactivity or residential if its spatial occupation mainly

corresponds to the corresponding INSEE label. For the classes covering very few elements, with an outlier behavior,

we label them together asothers. It isworth mentioning that themethodology developed in [20], which weadopt in

our study, has been shown to provide better land use information than o# cial census data. Wealso recall that, for

privacy compliance, someSFR-IRISzones are theaggregation of several INSEE IRIS. Therefore, wearenot looking

for aperfect mapping between INSEEdata and our automatically obtained classes. Asamatter of fact, asdiscussed

below, theactivity and others classes areover-represented in our classi! cation method with respect to INSEEdata. To

summarize, following thismethodology on our dataset containing in total 326 SFR-IRISzones, weobtain threemain

labels, asshown in Figure8, which are in linewith the threeclasses de! ned by INSEE.

Paris before lockdown Paris during first lockdown

H.C. Fanticelli et al. - "Data-driven Mobility Analysis and Modeling: Typical and Confined Life of a Metropolitan Population", ACM Transactions on Spatial Algorithms 

and Systems
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• Commercial Orange data from an activity area in Cognac (2020 – 2021)

• Motion detection sensors deployed in the same area 

S. Rabenjamina et al. - "Comparison of User Presence Information from Mobile Phone and Sensor Data", ACM MSWiM
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• Correlation between the two datasets
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• Synchronisation between peaks in the two datasets
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