A Real Time Artificial Intelligence System for Tennis Swing Classification

Kevin Ma

Oak Park High School, Oak Park Unified School District 899 Kanan Rd, Oak Park, CA 91377 <u>kevinma0522@gmail.com</u>

Outline

- ► Introduction
- System Architecture
- ▶ Data Acquisition and Feature Extraction
- ► Machine Learning Methods
- Experimental Results
- Discussion and Summary

Introduction

- Stay At Home
- Tennis Training
 - ► Coaching: Expensive, hard to locate.
 - Social Distancing can't be followed

Introduction

- Al assisted system:
- Daily training that requires only one player.
- Live Sensor Data
 - ► Feedback on Stroke Accuracy

System Architecture

System Architecture

- SensorTile Data Acquisition Module
- Feature Extraction Module
- Machine Learning Module
- Display Module

Data Acquisition and Feature Extraction

- SensorTile
 - MEMS Sensors
- 9-Dimensional Data
 - Accelerometer, Gyroscope, Magnetometer: each three axes x, y, z
- System Workbench
- ▶ 10 Hertz Collection Rate

Tennis Stroke

(a) Topspin Forehand

(b) Subpar Forehand

(c) Topspin Backhand

(d) Subpar Backhand

Tennis Stroke

(e) Slice Forehand

(f) Slice Backhand

Correlation Graph

9-Dimensional Data for Topspin Forehand

9-Dimensional Data for Subpar Forehand

Machine Learning Methods

- Support Vectors Machine (SVM)
- Neural Networks
- Decision Trees
- ► Random Forrest
- ► K Nearest Neighbors (KNN)

Support Vectors Machine Classification Accuracy

TABLE I. SVM Confusion Matrix

			Precision					
		C1	C2	C3	C4	C5	C6	
Predicted	C1	63	0	0	0	0	0	1.00
Tennis	C2	0	50	0	1	0	0	1.00
Swing	C3	0	0	58	0	0	0	0.98
	C4	0	0	0	60	0	0	0.98
	C5	0	0	1	0	59	1	0.94
	C6	0	0	0	0	4	63	0.98
	Recall	1.00	0.98	1.00	1.00	0.97	0.94	
Classification Accuracy=98.06%								

- Neural Network
 - System of layered perceptron. Weights and biases.
- For our purposes:
 - ▶ 180, relu
 - ▶ 10, relu
 - ▶ 1, softmax

$$\sigma(ec{z})_i \, = \, rac{e^{\,z_i}}{\sum_{j=1}^{\,K} \, e^{\,z_j}}$$

A neural network fixes the number of these basis functions. A neural network is composed of a system of layered perceptrons, or "nodes" that attempt to emulate the neurons in a real human brain.

TABLE II. NEURAL NETWORKS CONFUSION MATRIX

			Precision							
		C1	C2	C3	C4	C5	C6			
Predicted	C1	62	0	0	0	0	0	0.98		
Tennis Swing	C2	0	54	0	0	0	0	1.00		
Swing	СЗ	1	0	62	0	0	0	1.00		
	C4	0	0	0	51	0	0	1.00		
	C5	0	0	0	0	62	0	1.00		
	C6	0	0	0	0	0	68	1.00		
	Recall	1.00	1.00	0.98	1.00	1.00	1.00			
	Classification Accuracy=99.72%									

Decision trees are traditional methods of classification.

TABLE III. DECISION TREE CONFUSION MATRIX

			Precision						
		C1	C2	C3	C4	C5	C6		
Predicted	C1	58	1	2	2	0	0	0.92	
Tennis Swing	C2	2	55	0	0	1	1	0.96	
Swing	C3	1	0	60	5	0	0	0.97	
	C4	2	1	0	51	0	0	0.88	
	C5	0	0	0	0	53	3	0.96	
	C6	0	0	0	0	1	61	0.94	
	Recall	0.92	0.93	0.91	0.94	0.95	0.98		
	Classification Accuracy=93.89%								

- Random Forrest
 - Built off many decision Trees lumped together to prevent overtraining.

Random Forest is an ensemble method, which combines many weaker classifiers into a strong final classifier. A random forest is essentially a "forest" of decision trees that split the oblique hyperplanes, which are able to obtain accuracy without overtraining.

TABLE IV. RANDOM FORREST CONFUSION MATRIX

	True Tennis Swing							Precision		
		Cl	C2	C3	C4	C	C6			
Predicted	C1	49	0	0	0	0	0	0.96		
Tennis Swing	C2	1	61	0	0	0	0	1.00		
Jwang	C3	1	0	57	0	0	0	0.97		
	C4	0	0	2	55	0	0	0.98		
	C5	0	0	0	1	57	0	1.00		
	C6	0	0	0	0	0	76	1.00		
	Recall	1.00	0.98	0.98	0.96	0.98	1.00			
	Classification Accuracy=98.61%									

The K-nearest Neighbors model, also known as k-NN, is a model that examines the location of new data relative to training data.

TABLE V. K NEAREST NEIGHBOR CONFUSION MATRIX

			Precision						
		C1	C2	C3	C4	C5	C6		
Predicted	C1	62	0	0	0	0	0	1.00	
Tennis Swing	C2	0	54	0	0	0	0	1.00	
Swilig	C3	0	0	62	1	0	0	0.98	
	C4	0	0	1	50	0	0	0.98	
	C5	0	0	0	0	62	0	1.00	
	C6	0	0	0	0	0	68	1.00	
	Recall	1.00	1.00	0.98	0.98	1.00	1.00		
Classification Accuracy=99.44%									

Table VI shows the classification accuracies for tennis player 2 through tennis player 6. The data collection methods are the same as player 1, whose results are shown in Table I through Table V. We still used 70% of the collected data from each player as training data and the remaining 30% as test data.

TABLE VI. CLASSIFICATION ACCURACY FROM PLAYER 2 THROUGH PLAYER 6

		SVM	Neural Network	Decision Tree	Random Forrest	K-NN
Other	P2	90.82%	100%	84.69%	96.94%	87.76%
Team player	P3	93.75%	100%	95.54%	93.75%	96.43%
	P4	98.06%	100%	94.79%	98.96%	97.91%
	P5	96.30%	98.76%	91.35%	95.49%	87.85%
	P6	98.86%	100%	93.18%	96.24%	97.73%

Discussion and Summary

- Distinct swing machine learning classification
- Individual and team training
- Low costs
- Feedback without social contact.

Future Works

- Principal Component Analysis
- Wireless implementations
- Using Physics-Guided Machine Learning Method to reduce the training sample size