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Introduction

. Why Early Detection?

=  Take Preventive and Corrective Measures.

= Avoid Hazards.

= Avoid unplanned shutdowns/maintenance.

= Avoid loss in revenue, productivity & reputation.
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2 Challenges faced by Operator

= Too much information from multiple Sensors of
each component.

= Unspecified dependency among components.

= (Qperational change point not explicitly apparent.

@ Goals

= Understand the behavior of plurality of sensors.
= |dentify the onset of abnormal condition.
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SYSTEM DESCRIPTION
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* System Description
e 4 identical interconnected components of each system..
e 10 sensors of each component.
 The components either fail before mission time (1000 atu) or
remain under normal operation.

* Descriptive Analysis
 Normal behavior indicated by black line and abnormal behavior
indicated by red line.
* Change point depends upon multiple sensors and is not intuitively
identifiable.
* 39 unique sequences of onset of abnormal condition are obtained
from the given 200 systems showing weak interdependency

Time bracket (atu)] number of times component fails under a particular time bracket

Componentl Component2 Component3  Component4

[800, 850) 9 10 6 7
[850, 900) 25 21 28 37

[900, 950) 42 42 48 35
[950, 1000) 30 25 21 25
94 102 97 96

atu- arbitrary time units A
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METHOD-1, LSTM-IC

LSTM-IC Architecture

= LSTM many-to-many network with each input have
an output label

OUTPUT
SEQUENCE G e 5 g 5 e
; ; ; ; = Component’s change point is considered
independent of each other.
LAYER-2 ISTM » LSTM » LSTM ----->  LSTM P
f f f f = Selected sensors of a component are used as input.
LAYER-1 LSTM > LSTM > LSTM bl > LSTM
NPUT t t t t = Suitable algorithm for weak to no interdependency
SEQUENCE X, X% G - between components
Timeliness error* of LSTM-IC
Train Error | Test Error | Total
Error
LSTM-IC (10 IS M 0.0394 0.08 0.0512
LSTM-IC (statlonary 0.0081 0.021 0.0117
sensors)
[OS ‘ CON.;.{J\I..I'-I!/:NCY ” . . . .
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METHOD-2, LSTM-ED

RECONSTRUCTED : , : ;

SEQUENCE Xp  *» X > X ' S5

DECODER HD, < HD, < HD, <+—— HD,
*

ENCODER HE, » HE, *» HE;, —>  HE

INPUT

SEQUENCE Xy > Xy > X3 —> Xy
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LSTM-ED Architecture

= |STM based Encoder Decoder

= Component’s change point is considered
independent of each other.

= Data obtained before the change point of all the
sensors is reconstructed.

Timeliness error table

m i

LSTM (10 = 0.0394 0.08 0.0512

LSTM (statlonary 0.0081 0.021 0.0117
sensors)

LSTM-ED 0.4423 0.417 0.435
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METHOD-3, LSTM-MDA

OUTPUT Component Component Component Component
SEQUENCE 1 Lifetime 1 Lifetime 1 Lifetime 1 Lifetime
t t t t
LAYER-2 I
Prediction layer
4
LAYER-1 Abstraction Layer
4
I | |
INPUT
SEQUENCE Component Component Component Component
1 sensors 2 sensors 3 sensors 4 sensors

The timeliness error of LSTM-IC is the least in all
the 3 methods used.
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LSTM-MDA Architecture

= Component’s change point is considered dependent of
each other.

= Selected sensors of all components are fed to the
network.

= Suitable for high interdependency between
components

Timeliness error table

m Train Error Test Error Total Error

LSTM (10 sensors) 0.0394 0.08 0.0512

LSTM SEWGLERA 0.0081 0.021 0.0117
sensors)

LSTM-ED 0.4423 0.417 0.435
LSTM-MDA 0.0585 0.2385 0.1089
7
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LSTM- Ensemble Model

Why Ensemble?
e Stand alone LSTM-IC model had missed and false alarms
contributing to high timeliness error.

| Ii * Stand alone models have high variance between train and
1'1 2'2

..... W,eY s REGRESSION * An ensemble model on top of LSTM-IC is built to minimize

OUTPUT

I the timeliness error
16 models selected RULE-1 (Missed Alarms)
Selection of Models . Model bl dentify ch : |
based on RULES 9 els unable to identify change point at least once are
| | A | | rejected
W s W, e RULE-2 (False Alarms)
t t t | * All the models considered for ensemble must predict an
LSTM-IC  LSTM-IC  LSTM-IC  LSTM-IC alarm, else no alarm.
1 2 3 30
t | | t | ENSEMBLING TECHNIQUES
INPUT * Median (LSTM-median)
DATA * Linear Regression (LSTM-LR)
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Results

Parity plots of actual time of change point vs

* Timeliness error for all models with a train to test split of systems as
predicted time of change point for LSTM-LR model

72:28. 1000 Test 1000 Train
e Error for LSTM-IC is lower than LSTM-MDA indicating weak f: 950 4 ¢ 950 4
= S 1
interdependency between components. & 900 1 k 200
850 - A+ 830 T
* Use of only Stationary sensors reduces error for LSTM-IC by 73%. 200 | 1 800 —
5 800 830 900 950 1000
* LSTM-median ensemble model decreases the error over LSTM-IC 800 850 500 230 1000 Actyal
Actual ctu
model by 34%. Train | Test Error | Total
* LSTM-LR model has the minimum error of 0.0086 on the test data Error Error

LSTM (10 eI 0.0394 0.0 0.0512

LSTM (statlonary 0.0081 0.021 0.0117
sensors)

0.4423  0.417 0.435

0.0585  0.2385  0.1089
0.0085  0.0137  0.0099

tcs \ coyEERQLTTC’éQCY . 0.0084  0.0086  0.0085
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Conclusion / Future Work

Conclusions
v' Comparison of 3 deep learning methods is done for identifying the change point.
v' LSTM-IC method with stationarity of sensors turns out to have the least error.

v’ Linear Regression ensemble on top of LSTM-IC output provides the least error with least variance
between train and test.

Real-time Sensor

- — data Solution as a DIGITAL TWIN
MY | sensor data > v Real Time detection of change point/anomaly of industrial
Operating/ ; = H
4 Maintenance : R eqUIpment
decisions Process & manufacturing
ommunication Industries
v' Ensure health management of equipment and reduce
4 " Change | unplanned shutdowns.
— point
W/ @ $ § . detection
£ 8 ; . :
— & | [ component v’ Take preventive and corrective measures.
N health Knowled
—ge__J
Databases . . . .
v Avoid loss in revenue, productivity & reputation
User Application Digital Twin
(Edge/Cloud)
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= APPENDIX
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Long Short-Term Memory

G

Cell state

Next cell state

Py
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Hidden state Next hidden state
X, Input
Inputs: Outputs: Nonlinearities: Vector operations: Gate classification
: New updated s Scaling of Forget gate
xt Current input Ct mcmor';da G Sigmoid layer X information BeL 8
Memory from Adding o Input gate
ct“ last LSTM unit ht Cunrent outpast By Tanh layer o information
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System Description
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* System Description
e 4 identical interconnected components.
* 10 sensors of each component.
* Normal operation indicated by ‘0’ and abnormal by 1.
* The components either fail before mission time (Tm)
or remain under normal operation.

* Timeliness Error / Performance Metric

gim — gim  gim % NaN,#/™ % NaN
0 t/™ = NaN, #/™ = NaN

A= . : i=1,..,;m=1,...M
kfalse /'™ = NaN, /'™ # NaN J ] m
—Kmissea T/™ % NaN, /™M = NaN
Miest 4
1 . bl=1j(1_e—7‘fﬂ1)
— jm
A= 4M e Z Z(p(ﬂ ) €10.1] b,=1/(1—e"T/%)
m=1 j=1
1 .
AlM< =T

(Aj'm) ~ (1 - eAi.m/ﬂ:)bl T Aj,m< 0
@ - (1 _ e_Al'Jn/az) bz 0< Aj.ms o
Aj,m> 'r

j=eim=1;...M

1
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Methodology: Long Short-Term Memory

Method-1

Method-2

§ Method-3

LSTM-IC Architecture

= Component’s change point is considered

independent of each other.

= Selected sensors of a component are used as input.
= Suitable algorithm for weak to no interdependency

between components

LSTM-ED Architecture

= Component’s change point is considered

independent of each other.

= Data obtained before the change point of all the

sensors is reconstructed.

LSTM-MDA Architecture
= Component’s change
dependent of each other.

point is

= Selected sensors of all components are fed to

the network.
= tSuitable for high
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OUTPUT
SEQUENCE

LAYER-2

LAYER-1

INPUT
SEQUENCE

RECONSTRUCTED
SEQUENCE

DECODER

ENCODER

INPUT
SEQUENCE

OUTPUT
SEQUENCE

LAYER-2

LAYER-1

INPUT
SEQUENCE

A
LSTM  »
A
LSTM »
A
X,l

A
LSTM >
A
LSTM »
A
> X,

(O - -- - >

A 3
LSTM = > LSTM

4 4
LSTM = > LSTM

i i

X3 [ Sy > X,

X, — X,

HD, < HD, HD, «— HD,
A
HE, > HE, HE; — HE,
X, > X, > X3 — X;
Component Component Component Component
1 Lifetime 1 Lifetime 1 Lifetime 1 Lifetime
A A I A 4
Prediction layer
A
Abstraction Layer
A
I [ [ I
Component Component Component Component

1 sensors

2 sensors

3 sensors

4 sensors
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Train

Error

Test Total
Error Error

LSTM ¥F Model 1 0.0394
sensors)

LSTM Model 2 0.0081
(stationary
sensors)

Model 3 0.4423
Model 4 0.0585
Model 5 0.0085
Model 6 0.0084

16

0.08 0.0512

0.021 0.0117

0.417 0.435

0.2385 0.1089

0.0137 0.0099
0.0086 0.0085
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