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Word Embedding Vectors
● Word2vec: original skip-gram[1]

● GloVe: log bi-linear regression[2]

● FastText: subword information[3]

● BERT: contextualized embeddings[4]

● Sentence embeddings
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Word2vec Skip-gram Model



Word2vec-PLUS: sum target and context weights



Word2vec-PLUS Training Corpora



How do we evaluate embedding quality?

Analogy sets:

● Google Analogy Test Set[5]

● SAT Questions[6]

● SemEval 2013[7]



Google Analogy Test Set
● Common evaluation for word embeddings

○ GloVe
○ FastText
○ Word2vec

● 19,544 questions in 14 categories
○ Athens : Greece :: Baghdad : Iraq (capital-country)
○ boy : girl :: brother : sister (family relationships)
○ acceptable : unacceptable :: aware : unaware (opposites)
○ bad : worse :: big : bigger (comparatives)



Google Analogy Test Set 

● Cognitively simple questions
○ … but no multiple choice

● Method:
○ Given a : b :: c : d, compute d’ = c + b - a  and find 

argmins∊vocabdistcos(d’, s)
○ Equivalent to argmaxs∊vocabsimcos(d’, s)



Google Analogy Test Set



SAT Questions

Compute argmins∊[A,B,C,D,E]distcos(d’, s)



SAT Questions



SemEval 2013 Sentence Similarity
● Sentence pairs with human-given similarity scores

○ E.g. “A woman is cooking.” / “A woman is cooking something.” / score = 3

● Method:
○ Sentence vector ← sum of word vectors

○ Find cosine similarity of sentence vectors in each pair

○ Final score: correlation of embedding-given similarity scores with 

human-given scores



SemEval 2013 Sentence Similarity



Analysis: advantage of summed embeddings



Topical and typical similarity (Nalisnick et al.[8])
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Topical and typical similarity (Nalisnick et al.[8])
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Approach the same context 
word embeddings



Analysis: advantage of summed embeddings



Analysis: advantage of summed embeddings

Summed 
embeddings



Solving analogies requires knowledge of both 
varieties of similarity



Solving analogies requires knowledge of both 
varieties of similarity

Recall: argmaxs∊vocabsimcos(d’, s)

vwood
T(vstone + vcarpenter - vmason) = vwood

Tvstone + vwood
Tvcarpenter - vwood

Tvmason

S d’



Principal Component Removal (Arora et al.[9])

● v ← uuTv
○ where u is the first singular vector of the embedding matrix



Conclusion
● Summing target and context vectors to produce embeddings in a word2vec 

skip-gram model yields advantages in some analogy tasks 

● Benefits in other NLP tasks and other embedding algorithms is an area of 
future research

● Principle component removal may be a viable method to improve embedding 
quality in some applications
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