
Compiler Module of Abstract Machine Code for Formal
Semantics Course

William Steingartner

Technical University of Košice, Slovakia

SAMI 2021
IEEE 19th World Symposium on Applied Machine Intelligence and Informatics

January 21-23, 2021, Herľany, Slovakia

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 1/14

Introduction

Motivation
Now the online (distant) teaching in the time of the world pandemic is very actual
and possibly the one method for providing the full lectures.
Educators face a great challenge, as in teaching online, without contact with
students, to clearly explain various topics.
In teaching the course Semantics of Programming Languages, we faced the
problem of how to clearly explain the formal foundations of semantic methods.
One of the suitable forms seemed to be the visualization and animation of
methods using educational software.
At present, when the contact of educators and students is limited mostly to the
online events, it is the interactive teaching software tools that play an irreplaceable
rôle in the teaching process.

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 2/14

Aim of our work

The aim of this work is to describe a software tool for generating code for the
abstract implementation of the language from input code in a language Jane.
This application can be used within the course Semantics of Programming
Languages.
It provides exact translation from a text form written in the language Jane into the
source code of assembler of an abstract machine for the structural operational
semantics.
One of the suitable forms seemed to be the visualization and animation of
methods using educational software.

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 3/14

Language Jane

Language Jane
a simple abstract language for defining the semantic methods and proving of their
properties and equivalences is used;
it is a non-real programming language grounded in imperative paradigm,
epitomizing a tiny core fragment of conventional mainstream languages: standard
imperative constructs as sequences of statements, selection (conditional),
repetition (loops) and handling the values in memory (variables assignment);
for defining formal syntax of Jane the following syntactic domains are introduced:

n ∈ Num – for digit strings;
x ∈ Var – for variable names;
e ∈ Expr – for arithmetic expressions;
b ∈ Bexpr – for Boolean expressions;
S ∈ Statm – for statements.

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 4/14

Language Jane – Syntax

The elements n ∈ Num and x ∈ Var have no internal structure from semantic point of
view.

The syntactic domain Expr consists of all well-formed arithmetic expressions created by
the following production rule

e ::= n | x | e+ e | e− e | e ∗ e | (e).

Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b | (b).

As the statements S ∈ Statm we consider five elementary Dijkstra’s statements:

S ::= x := e | skip | S;S | if b then S else S | while b do S.

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 5/14

Provably correct implementation

A formal specification of the semantics of a programming language is useful when
implementing it.
This is usually realized as translation of the higher-level language into a structured
form of assembler code for an abstract machine.
An abstract machine is an intermediate language with a small-step operational
semantics, it provides an intermediate language stage for compilation.
First, the meaning of the abstract machine instructions are defined by an
operational semantics.
Then translation functions that will map expressions and statements in the
higher-level language into sequences of such instruction are defined.
The correctness result then states that if a program is translated into code and the
code is executed on abstract machine then the same result must be provided as by
semantic functions for natural or structural operational semantics.

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 6/14

Specification of AM
The description of particular computational steps of abstract machine is usually given by
configurations of the form

〈c, σ, s〉 ,
where

c stands for a code – the sequence of instructions to be executed,
σ is the evaluation stack, and
s is a storage.

Semantic domain for stacks:
Stack = (Z ∪B)∗ .

The language of abstract machine is a structured assembler, which consists of
instructions:

instr ::= PUSH−n | ADD | SUB | MULT |
TRUE | FALSE | EQ | LE | AND | NEG |
FETCH−x | STORE−x |
EMPTYOP | BRANCH(c, c) | LOOP(c, c)

c ::= ε | instr : c

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 7/14

Generating code for the abstract machine

A code for the abstract machine is generated by the translating functions:

T E : Expr→ Code

T B : Bexpr→ Code

T S : Statm→ Code
Example of translation:

T E JnK = PUSH−n
T E JxK = FETCH−x

T E Je1 + e2K = T E Je2K : T E Je1K : ADD
T E Je1 − e2K = T E Je2K : T E Je1K : SUB
T E Je1 ∗ e2K = T E Je2K : T E Je1K : MULT

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 8/14

Program specification

the input code is written in Jane language;
after reading an input source code (input program), the task of the application is
to find out whether the given input is syntactically correct according to the rules of
the Jane language;
in case of an incorrectly given input program, the application provides an error
message referring to the problem in a source;

the user can choose from two types of listings of the resulting program:
I the first type is a direct result – this output form contains only the

generated instructions of the abstract machine;
I the second type is an extended form with particular steps of generating

the output, it contains the entire sequence of instruction generation;

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 9/14

Program specification
Program was developed as a part of educational project KEGA 011TUKE-4/2020:
„A development of the new semantic technologies in educating of young IT
experts“;
the main task of this application is the translation of an input code written in Jane
language into the instructions of an abstract machine for the structural operational
semantics;
program reads an input, provides lexical and syntax analysis and produces the
output code: input code is converted via an ANTLR parse tree and code
generation to output code;
since the input code is a source in one language and output code is again a source
in different language, such kind of compiler is known also as a source-to-source
compiler:

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 10/14

Implementation of a parser
for the implementation of a grammar for Jane programming language, we decided
to use ANother Tool for Language Recognition – ANTLR;
the grammar contains rules for parser and lexer;
for the language Jane, a full grammar contains rules to which we assign a
transcription to abstract machine code;
the grammar is written in the form of extended Backus-Naur form.

Part of grammar:

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 11/14

Teaching tool
Graphic User Interface

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 12/14

Conclusion

We presented a software tool which serves as source-to-source compiler from an
abstract language Jane to the instructions of abstract machine for structural
operational semantics.
Our application is ready for use in the teaching process in classes and during the
online teaching for both teachers and students.
Because the distant teaching plays a crucial rôle, we consider as the main
contribution of our work an interactive method of providing information during the
educational process using the visualizing software tools.
Our aim is to prepare complex learning environment for an attractive teaching the
formal methods that are grounded in semantics.
We are convinced that visualization tools will help to significantly understand and
make the teaching of formal methods more attractive for future IT specialists.

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 13/14

Thank you for your attention

William Steingartner – Compiler Module of Abstract Machine Code for Formal Semantics Course 14/14

	Introduction
	Aim of our work
	Language Jane
	Language Jane – Syntax
	Provably correct implementation
	Provably correct implementation
	Provably correct implementation
	Program specification
	Program specification
	Design and implementation
	Design and implementation
	Conclusion
	Thanks

