

A Portable BVM-based Emergency Mechanical Ventilator

doc. Ing. Ivan Virgala, PhD.

email: ivan.virgala@tuke.sk

Technical University of Košice

Faculty of Mechanical Engineering

Institute of Automation, Mechatronics, Robotics and Production Systems

Department of Mechatronics

Contents

- ☐ Introduction
- ☐ Principle of Artificial Lung Ventilator
- ☐ Requirements on Mechanical Ventilator
- ☐ Design of Artificial Lung Ventilator
- ☐ Experiments and Discussion
- ☐ Conclusion and Future Work

Introduction

COVID-19 (Coronavirus diseas 2019)

☐ Mortality of COVID-19 up to October 2020 – 2,98 %

- ☐ Artificial lung ventilation
 - Required by 1.5 mil. (USA 2013)
 - Mortality of patients
 undergoing of ALV 31 37%

Principle of Artificial Lung Ventilator

Conditions of utilization

- ☐ Incorrect application destruction of a lung VILI (ventilatorinduced lung injury)
- ☐ Next factors affecting affecting VILI:
 - Lung capillary pressure
 - Respiratory rate
 - Genetic predisposition
- ☐ Groups of artificial ventilation
 - positive pressure ventilation
 - negative pressure ventilation
 - jet ventilation
 - high-frequency ventilation

Principle of Artificial Lung Ventilator

Phases of PPV

- ☐ Inspiration phase
 - Controlled by control parameter like pressure or gas flow
- ☐ Inspiration pause
 - Standstill of gas flowing through an airways and intrapulmonary redistribution of tidal volume is in a progress
- ☐ Expiration phase
 - Passive phase of respiratory cycle
- ☐ Expiration pause
 - A phase started by ending of air flowing from patient up to next respiratory cycle

Principle of Artificial Lung Ventilator

Phases of PPV

Design of Mechanical Ventilator

Requirements on Mechanical Ventilator

- ☐ Portability
- ☐ Simplicity
- ☐ Fast reproducibility
- ☐ Robustness
- ☐ Hospital Household utilization
- **□** IoT

Design of Mechanical Ventilator

Control System of Mechanical Ventilator

- ☐ Low level control
 - Atmel ATxmega16E5
- **□** Sensors
 - o pressure sensor SPD005g
 - o flow sensor SFM3300-250
- ☐ High level control
 - PLC B&R 4PPC70.0702-20W

Experimental Analysis

Experimental Analysis

Conclusion and Future Work

- ☐ Timeliness of the topic
- ☐ Suitable requirements and mechanical design
- ☐ Control system design
- ☐ Suitable experimental results
- ☐ Future work
 - Improvement of control algorithm
 - Fully assisted ventilation

Thank you for your attention

doc. Ing. Ivan Virgala, PhD.

email: ivan.virgala@tuke.sk

Technical University of Košice

Faculty of Mechanical Engineering

Institute of Automation, Mechatronics, Robotics and Production Systems

Department of Mechatronics