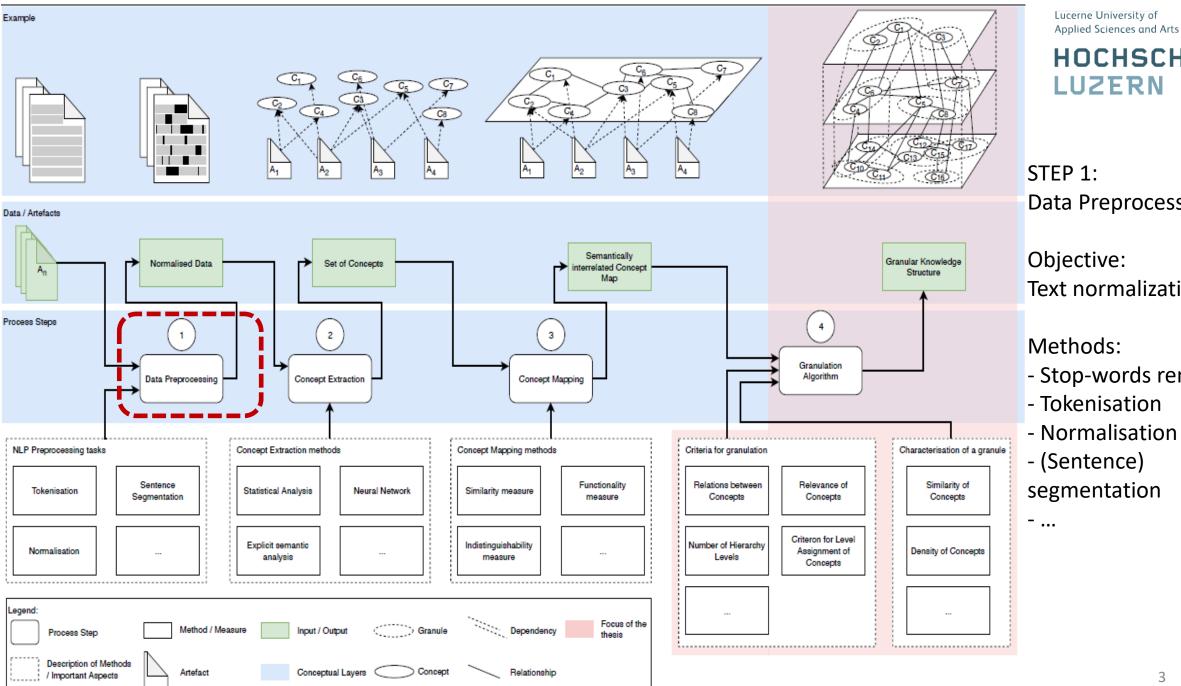
IEEE 19th World Symposium on Applied Machine Intelligence and Informatics

Lucerne University of Applied Sciences and Arts

Towards Granular Knowledge Structures: Comparison of Different Approaches

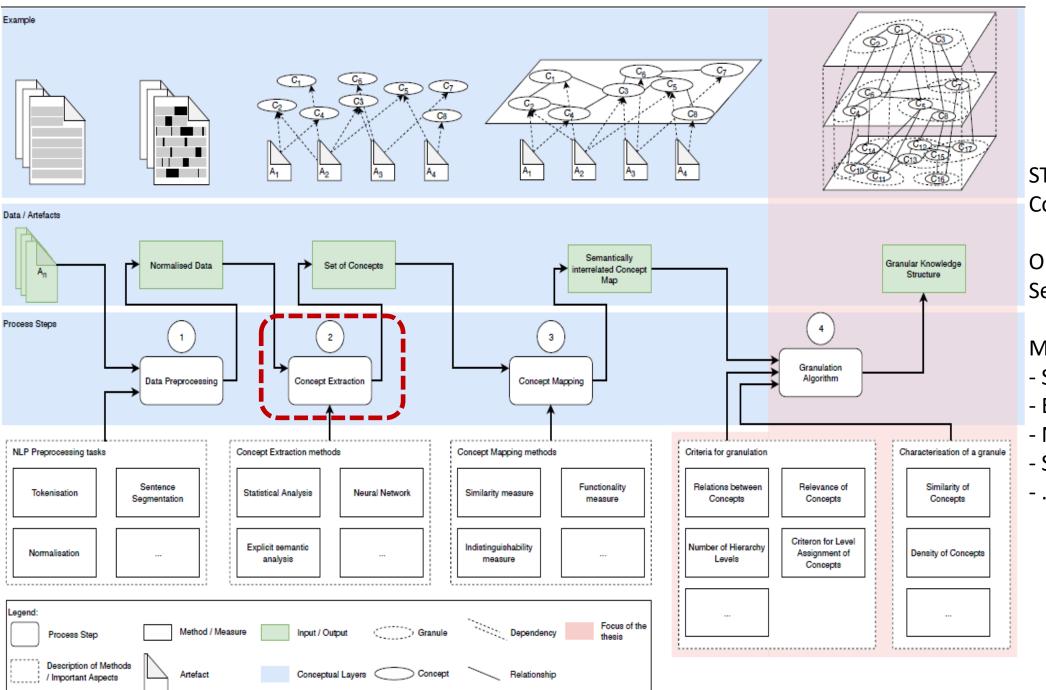
F. Stalder , A. Denzler , *L. Mazzola*

Lucerne University of Applied Sciences and Arts (HSLU), Switzerland School of Computer Science


IEEE 19th World Symposium on Applied Machine Intelligence and Informatics January 21-23, 2021, in Herl'any, Slovakia online

Intro

- Building granular knowledge structure (GKS) is a task becoming relevant
- Granular computing is only a reference model: it lacks specific algorithmic implementations as references
- We need to identify usable approaches for Granular Knowledge Map identification.

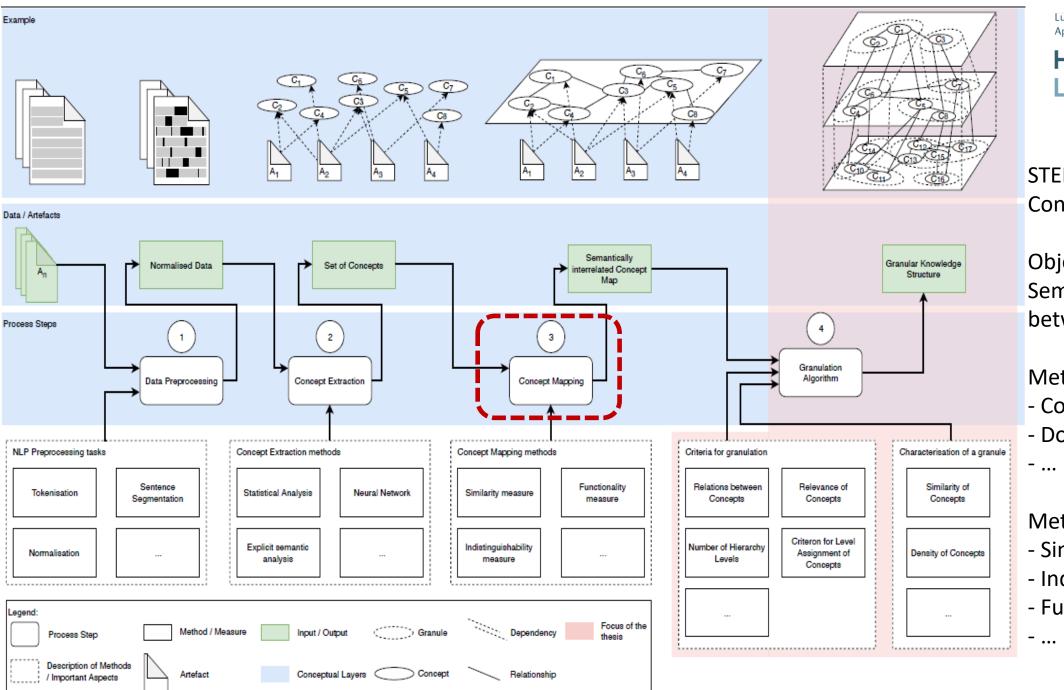


HOCHSCHULE

Data Preprocessing

Text normalization

- Stop-words removal


HOCHSCHULE **LUZERN**

STEP 2: **Concept Extraction**

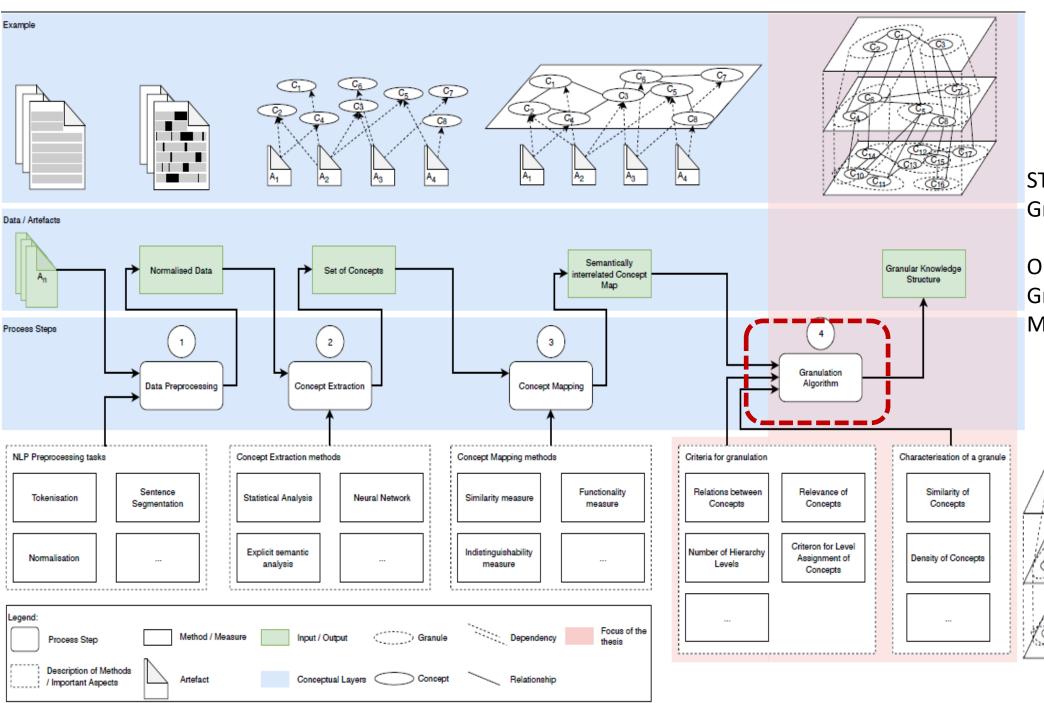
Objective: **Set of Concepts**

Methods:

- Statistical Analysis
- ESA
- NN
- Semantic role labeler

HOCHSCHULE LUZERN

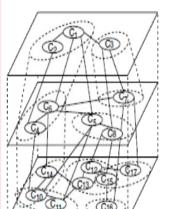
STEP 3: Concepts Mapping


Objective:
Semantic interrelation
between concepts

Methods:

- Concepts linkage
- Document linkage

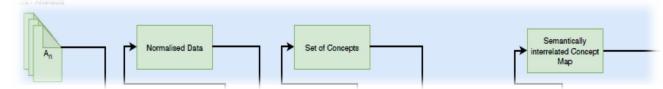
Metrics:


- Similarity
- Indistinguishability
- Functionality

HOCHSCHULE LUZERN

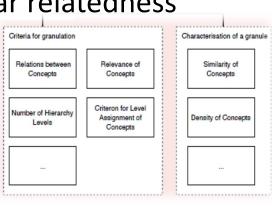
STEP 4 (the focus): Granular approach

Objective: Granular Knowledge Map



Characteristics (steps 0-3)

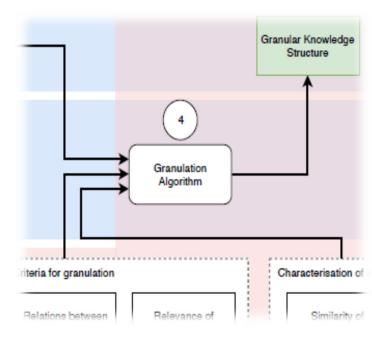
- Data: complete and noise-free
- Normalised data: domain-relevant and representative
- Set of Concepts: semantically meaningful and domain-relevant
 - Coverage of the full original data set
 - High specificity and precision (eg: TF_IDF), high TP and low FP
 - Coverage is of less importance (FN)
- Semantically interrelated Concept Map: dense-enough relations
 - Based on distance measure on high dimensional spaces
 - Need to find a meaningful cut-off/threshold value (to filter irrelevant relations)


Characteristics (step 4: clustering)

- Clustering: defining homogeneous sets of concepts
 - Capability of manage fuzziness → concepts in different group with different confidences

- Hierarchy identification: bottom-up or top-down
 eg: granules dimension to decide the appropriate layer
 - Horizontal relationships (on a layer) can rely on averaged distance
 - Vertical relationships (within layers) can use averaged inter-granular relatedness

measure


Can be improved by metadata (if available)

HOCHSCHULE LUZERN

Evaluation dimensions

- Clustering Output :
 - Hierarchical vs. flat
 - Crisp-clustering vs. fuzzy groups boundaries (soft)
 - Same vs. variable dimension clusters
- Preliminary Input:
 - Cluster numbers, termination criteria, MAX cluster size, ...
- Cluster Computation:
 - Based on Entity, Nodes, or Value Space
- Adaptive Learning (adapt underlying structure to changing conditions)
- Complexity (asymptotic estimation of time required for a solution)

HOCHSCHULE LUZERN

Requirements (hard vs soft)

- HARD (should be addressed in the main algorithm):
 - Fuzzy clustering (crisp output is not enough)
- SOFT (can be achieved by combination with other algorithms):
 - Hierarchical output (with flat output, another algorithm should take care of inducing a hierarchy)
 - Eg: SOM with its GHSOM extension
 - Addressing high dimensional data (if appropriate)

• DESIRED:

- Higher number of preliminary Inputs (hard to determine, but offer control over the algorithm)
- Capacity of computing using different metrics
- Adaptive learning, if possible both is unsupervised and supervised flavor
- Lower possible time-complexity (to guarantee better scalability to larger dataset input)

HOCHSCHULE LUZERN

Filtering by: Fuzziness support (required natively)

HOCHSCHULE LUZERN

Filtering by:
Hierarchical structure
support
(either native or in an
extension, existing or
not)

									_				,
		Partition based	Fuzzy Theory based	Agglomerative Hierarchical	Divisive Hierarchical	Distribution based	Density based	Graph Theory based	Grid based	Fractal Theory based	Self-organising Map	Projective	
Characteristics	Clustering Output				, .					,,,			
	Flat	Х	X			X	X	X			X	X	L
	Hierarchical			X	X				X	X			
	Hard	X		X	X		X	X	X	X		X	
	Soft		X			X					X	X	
	Varying Cluster Size	Х	X			X	X	X	X	X	X	Х	
	Preliminary Input												
	Number of Clusters	X	x									(x)	
	Stopping Criterion	Х	х								X		
	Cluster Size						X		Х		X	(x)	
	Special Parameters						Х	X	X	X	X	Х	
	Computation of Clusters				·/					•			
	Entities (Nodes)	Х	X	X	X	Х					X	Х	
	Relations (Edges)							X					
	Value Space						X		X	X		X	
	Adaptive Learning								'				
	Supervised										X	Х	
	Unsupervised				,			· .			X	X	
AGO	GREGATED SCORE	6	6	3	3	4	6	5	6	5	9	9 (+2)	
Improvements	Hierarchical Clusters	х	х					х			х	х	
	Soft Clusters			X			Х	х	X				
	Adaptive Learning			Х				х					
Complexity	Time Complexity(asymptotic estimation)	O(n*m*k*I)	$\mathcal{O}(n*m*k^2*I)$	$\mathcal{O}(n^2 * \log n)$	$\mathcal{O}(e * \log(v))$	$\mathcal{O}(n*\log n)$	$\mathcal{O}(n^2)$	$\mathcal{O}\left(e*d*\log v\right)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(Mn)$	$C(n+k^2)$	

HOCHSCHULE LUZERN

Comparing on the remaining (desiderata)

Two candidates:

- GHSOM
- Projective clustering (eg: ensembles)

Complexity:

- SOM α product of data points (n) with number of neurons (M) in the lattice
- Ensembles α data points (n) (cluster number is normally significantly smaller)

GHSOM

??????

13

Results

- We discussed the process to generate Granular Knowledge Maps, based on its 4 basic steps
- For each step, we described possible methods and requirements of the input data/artefact
- Concentrating on the clustering and hierarchy building, we compared 11 families of algorithms and discover the best two candidates, based on their asymptotic computational (time) complexity:
 - Low dimensionality data: Growing Hierarchical Self-Organizing Maps (GHSOM)
 - High dimensionality: a projective approach, such as Projective clustering ensembles
 - hierarchical extension should be added on top of it

Conclusion and outlook

• Findings:

- Absence of an universal solution
- 2 candidates ranked best for granular knowledge structure (GKS) creation
 - One for low-dimensional space, the other for high dimensional ones
- Extension should be added to fulfill all the requirements identified

What's next?

- theoretical work, need validation by external measures (eg: expert feedback)
- Compare the performance on different datasets, for generalization purposes
- Explore acceptance of such a solution
 - by collecting feedback from user for semantic meaningfulness
 - By rating the results produced using the GKS as knowledge base

Questions?

For any questions or request, please feel free to contact us, thanks.

- By email:
 - Florian Stalder florian.stalder@hslu.ch
 - Alexander Denzler <u>alexander.denzler@hslu.ch</u>
 - Luca Mazzola <u>luca.mazzola@hslu.ch</u> or <u>mazzola.luca@gmail.com</u>
- If you are interested in our activities, please visit our lab website:
 - http://hslu.ch/blockchainlab/

