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Introduction




Artificial Intelligence (Al) is everywhere!

Hey Siri

Speech Recognition (Natural Language Processing) Video Game Playing



Why research autonomously exploring intelligent agents?

* Increase In autonomy of Al systems has risks and can lead to
accidents, posing physical threats to human Al users

e Al research 1S more accessible than ever

* Improvements in safe exploration

may have benefits in other
domains

©  ®¥ \What Changes When Al Is So
Accessible That Everyone Can
Use It?

by H. James Wilson and Paul R. Daugherty

What Happens When
Self-Driving Cars Kill
People?

Ron Schmelzer
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Why research autonomously exploring intelligent agents?

The following concrete problems in Al were provided in 2016 by researchers from
Google Brain, OpenAl, UC Berkley, and Stanford in light of recent incidents

 Avoiding negative side effects
 Avoiding rewards hacking

« Scalable oversight

« Safe exploration

* Robustness to distributional shift

The same researchers assert that AI/ML accidents and risks are attributed to the
following three “failures”:

« Having the wrong objective function

« Having an objective function that is too expensive to evaluate frequently

« Undesirable behavior during the learning process



Why research autonomously exploring intelligent agents?

Recommended Solutions for Improving Exploration Safety:

« Adversarial Blinding - preventing an agent from understanding how its reward is
generated or blinding it to certain variables

« Trip Wires - introduce deliberate vulnerabilities and monitor them so that
researchers are alerted and can stop the agents immediately if the vulnerabilities
are exploited.

« Simulated Exploration

« Human Oversight



Why research autonomously exploring intelligent agents?
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« \We want to improve the safety of autonomous exploring Al through simulated
exploration and human oversight.

* In this research we use Unity’s Machine Learning Agents Toolkit (ML-Agents) to
train purposely misbehaving agents to determine when a human should intervene
during the agent’s learning process.




Related Works




Game Engines/Development Platforms as RL Environments for
Investigating Autonomous Exploration

* VizDoom and Mujoco
« Episodic curiosity-driven exploration

* OpenAl
 Arcade Learning Environment for general intelligent agents
* Intrinsic Curiosity Module (ICM) for curiosity-driven exploration
« Attention-based curiosity-driven exploration




Human-in-the-Loop Reinforcement Learning

» Hard-coded Guidance
 Defining catastrophes and significant rare events before training
* Environment-level action blockers
« Determining where to add actions in RL

 Actual/Learned Human Intervention
 Improving safety with model-based architectures and human intervention
 Training agents to imitate human intervention
* Runtime monitoring framework



Methodology




 Use Unity’s Machine Learning Agents Toolkit (ML-Agents)
Implementation of Proximal Policy Optimization (PPO) + ICM
algorithm to create purposely misbehaving autonomous exploring
agents

e |[dentify PPO+ICM training statistics and custom environment metrics
assoclated with agent misbehavior



Training Agents in ML-Agents

-

External
Communicator;

Python API

(ML-Agents) Z:\

UNITY Learning Environment

Illustration of externally training neural networks with ML-Agents



PPO + ICM, Learning Environment, and Training Parameters

PPO + ICM Algorithm

for tteration=1_2, ... do
collect set of actions (a) and next states (s+1) with policy ()
encode current state (s), next state (s+1) =2 @(s), @(s+1)
compute predicted encoded next state @{s+1)
intrinsic reward € @(s+1) — o(s+1)
optimize m parameters for maximizing extrinsic + intrinsic rewards
update

end for

PPO + ICM TRAINING PARAMETERS

Hallway Learning Environment

Parameter Value
gamma 0.95
lambda 0.95

bufter size 1024

batch size 128
epochs 3

learning rate 0.0003
time horizon 64
My steps 150000
beta 0.01
epsilon 0.2
hidden lavers 2
hidden units 128
sequence length 64
memory size 256
curiosity encoding size 128-256
curiosity strength 0.01-10.0




Training Conditions and Experiments

Train autonomous exploring agents with high
Intrinsic curiosity, large rewards, and large
penalties for 150,000 timesteps under the
following six conditions:

1. Low/Zero Curiosity Strength, Small
Rewards, Large Penalty

2. Low/Zero Curiosity Strength, Large
Rewards, Small Penalty

3.  Max Recommended Curiosity Strength,
Small Rewards, Large Penalty

4. Max Recommended Curiosity Strength,
Large Rewards, Small Penalty

5. Very High Curiosity Strength, Small
Rewards, Large Penalty

6. Very High Curiosity Strength, Large
Rewards, Small Penalty

CURIOSITY STRENGTHS AND REWARDS FOR
TEST CASES1-8

Case gﬁ:i;ﬁ Rewards Penalties
1 Disabled 1 -100, -0.1
2 Disabled 100 -1,-0.1
3 0.1 1 -100,-0.1
4 0.1 100 -1, -0.1
5 1.0 100 -1,-0.1
6 1.0 1 -100, -0.1
7 10.0 1 -100,-0.1
8 10.0 100 -1,-0.1




Analysis of ML-Agents Data
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Results and Discussion




Agents trained using the Proximal Policy Optimization

(PPO) algorithm with Intrinsic Curiosity Module (ICM)
enabled and large rewards or large penalties learned to
act undesirably within 150,000 timesteps.




 Implemented a collision counter and goal-to-collision ratio to identify
three test cases for further analysis

AVERAGE VALUES FOR AGENT WITH CASES 1-8
NEURAL NETWOREKS ATTACHED

AVERAGE VALUES FOR AGENT WITH Case | Goals Collisions GC-
DEFAULT NEURAL NETWORK Ratio
- 1 0 12.66 0.001
Goals Collisions : 2 1.333 183.33 0.008
Ratio
3 0.333 140.67 0.003
=
52 2.56 0.9566 4 0 418.33 0.001
5 0.333 268.67 0.006
6 0 362.33 0.001
7 0 43633 0.001
8 0 170.67 0.001




Case 6

Two strongest negative comrelations

(1) Epizode Length v. Cumulative Reward, (2) Value Loss v. Value Estimates

Third strongest Tn, [15]: df normé.corzi()
(3) Value Estima) . _ .. .
Cumulative Reward Episode Length Policy Loss Value Loss  Entropy Learning Rate  Value Estimate
Two strongest |
(1) Entropy v. Va Cumulative Reward 1.000000 40.980761 0228822 0331635 0434574 0.274277 40.274521
Episode Length -0.8897E 1.000000 0232043 0346523 0442840 -0.278359 0.285040
Third strongest I
Policy Loss 0.228822 40.232843 1.000000 0351071 D.554844 0.158015 40.320367
(3) Learning Raty
Value Loss 0.331685 0346623 0351071 1.000000 0.643581 0.528072 40.301058
Entropy 0434574 0442640 0554844 0643581 1.000000 0.470622 40.68567T4
Learning Rate 0.274277 0276358  0.150015 05208072 0470622 1.000000 -0.583451
Value Estimate 0274521 0.285040  0.220367 -0.8010568 -0.665674 -0.583451 1.000000

Average Cumulative Reward vs. Episode Length Correlation of

-0.96:
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Conclusion and Future Work




Conclusion

High-
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Future Work

« Expand and conduct experiments in additional learning environments
* Investigate Research Questions (RQs) and Research Objectives (ROs) 1 & 2

* RQ1: How can we modify RL algorithms to detect anomalies in training
statistics?

« RO1: Incorporate findings from experiments discussed in this research into a modified
PPO + ICM algorithm.

* RQ2: How can we accommodate a distracted human’s etforts to intervene
during the agent’s learning process in human-in-the-loop RL?

« RO2: Design and implement a scheme for alerting and receiving input from the human
during RL through an external smart device.



The End

Thank you!
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