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INTRODUCTION

• Screw theory, Motor algebra

• Geometric method

• 3D movement
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RIGID BODY KINEMATICS

• A Reference frame

• Points in the reference frame: P and O

• Velocity state of point O

The velocity state of one point on the rigid body relative to another
is described by:

υP = υO + υPO = υO + ωA B × rP/O
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RIGID BODY KINEMATICS

υP = υO + υPO = υO + ωA B × rP/O

where:

• vP is a point on the body, where the velocity is unknown;

• vO is the known velocity on the body;

• vPO is the velocity di�erence between the two points in
question;

• ωA B is the known angular velocity of the body;

• rP/O is the vector between O and P ; if the two points are
given in the same frame, then rP/O = P −O.
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RIGID BODY KINEMATICS

υP = υO + υPO = υO + ωA B × rP/O

Figure: Velocity relations on a rigid body
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PLÜCKER COORDINATES

The basics of Screw theory lie within the understanding of Plücker
coordinates. Plücker coordinates represent a line in space as part of
se(3) with six coordinates: three representing the line's orientation,
and three representing a point on the line[1]. With these values
known, a line in three dimensions can be described. There are two
representations for the screws:

$ =

[
e[3×1]
m[3×1]

]
(1) $ =

[
m[3×1]
e[3×1]

]
(2)

We use the notation of 1.
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SCREW

The screw is represented mathematically as:

$[6×1] =
[
e[3×1],m[3×1]

]T
(3)

Where:

• e is a vector depicting the direction of the Instantaneous
Screw Axis (ISA). It is also known as primary part. In the
application of robot kinematics calculation this is aligned with
the axis of the actuator.

• m[3×1] is the dual part of the screw, also known as the
moment of a line in the reference frame. (Note: this is called
moment, but no relation is shown here between the moment
known in mechanics.)

To calculate the dual part of the screw we use

m = he + r × e (4)
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SCREW
SCREW THEORY DESCRIPTION

m = he + rP2/P1 × e (5)

where r is a vector pointing from P1 to P2 on the body and h is the
pitch of the screw (the amount of linear movement performed along
the axis, while one complete rotation is performed by the body).
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SCREW
NOTABLE SCREW JOINT REPRESENTATIONS, LINEAR JOINT

One of the simplest forms of the motion is when

lim
h→∞

he + r × e, ω = 0

which results in

$ =

[
e

m

]
=

[
0
eh

]
(6)

This describes a pure linear displacement by h along e with 0
rotation on an in�nitely long line.
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SCREW
NOTABLE SCREW JOINT REPRESENTATIONS, ROTATIONAL JOINT

The other simple form is when

h = 0, ω 6= 0

which results in

$ =

[
e

m

]
=

[
e

r × e

]
(7)

which describes a purely rotational motion, with no linear
displacement along the ISA.
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SCREW
UNIT SCREW

A special representation of screws is the unit screw when |e| = 1.
This is represented by

$̂ =

[
ê

m̂

]
(8)

where

• ê = e

|e|
• m̂ = hê + r × ê
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SCREW
KLEIN FORM

Klein Form:

{∗; ∗} : e(3)× e(3)→ <{
$1$2

}
= {(e1;m1) , (e2;m2)} = e1 ·m2 + e2 ·m1 (9)

It is said that two screws $1 and $2 are reciprocal if the application
of the Klein form between them yields {$1;$2} = 0. The Klein
form in other words yields the distance between two screws
regardless of their direction. Note: In kinematics and dynamics the
most often used form is the Klein form, for calculating the passive
joint matrices in case of parallel mechanisms.
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SERIAL EXAMPLE
SPHERICAL MANIPULATOR

T =

 cos (q1 (t)) cos (q2 (t)) (l1 + q3 (t))
cos (q2 (t)) sin (q1 (t)) (l1 + q3 (t))

sin (q2 (t)) (l1 + q3 (t))


Where:

• T - End point of spherical robot

• q1 - rotational joint position about Z axis

• q2 - rotational joint position in the plane of XY

• q3 - linear joint position on the axis of the spherical robot
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SERIAL EXAMPLE
SPHERICAL MANIPULATOR

Writing up the Screws for each Joint:

$1 =



0
0
1
0
0
0

 $2 =



0
0
1
0
0
0

 $3 =



0
0
0

cq1 cq2
cq2 sq1
sq2


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SERIAL EXAMPLE
SPHERICAL MANIPULATOR

Initial equation of moving bodies in Screw Theory, adapted to the
spherical manipulator:

VO
[6×1] =

[
e[3×1]
m[3×1]

]
= q̇1$1 + q̇2$2 + q̇3$3

To get the velocity of the endpoint:

V = VO
m + VO

e × T

Which results in the equation below, where J is the well-known
Jacobian

V =

 −cq2 sq1 (l1 + q3) −cq1 sq2 (l1 + q3) cq1 cq2
cq1 cq2 (l1 + q3) −sq1 sq2 (l1 + q3) cq2 sq1

0 cq2 (l1 + q3) sq2


︸ ︷︷ ︸

J

 q̇1
q̇2
q̇3


︸ ︷︷ ︸

q̇
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SERIAL EXAMPLE
SPHERICAL MANIPULATOR

LSZ, GP, DAD KINEMATICS OF DELTA-TYPE PARALLEL ROBOT MECHANISMS VIA SCREW THEORY: A TUTORIAL PAPER17/27



SERIAL EXAMPLE
PLOTS

(a) Joint positions

(b) Joint Velocities

Figure: Spherical Joint variables
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GTPR EXAMPLE

Given:

• Basic con�guration of the GTPR with all characteristic points
(O,A1,A2,A3,B1,B2,B3,C1,C2,C3,T , q1, q2, q3)

• Velocity of TCP: υ
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GTPR EXAMPLE

Equation of TCP Velocity:

υ = ω0 1

X $̂0 1

X O + ω1 2

X $̂1 2

X O + ω2 3

X $̂2 3

X O+

+ ω3 4

X $̂3 4

X O + ω4 5

X $̂4 5

X O + ω5 6

X $̂5 6

X O

where

• X substitution of each respective arm A, B , C

• ω0 1

X $̂0 1

X O is a virtual screw introduced in order to �nd the
kinematic relationship between the joint-space and
tool-workspace easier.

• ω1 2

X is the angular velocity of the actuator (other notation: q̇).
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GTPR EXAMPLE

In parallel mechanisms it is necessary to locate a screw which is
able to cancel out most of the terms from the equation of the TCP
velocity. In this case it is a screw augmented to the passive links of
the delta robot. We will denote these screws with: $lxO . Applying
the Klein-form to the left and right sides of the equation of TCP
velocity:

A[3×3] υ[3×1] = B[3×3] q̇[3×1]

Where:

• A is called the reduced active matrix of the manipulator.

• B which is called the �rst-order driver matrix
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GTPR EXAMPLE

A =
[
e lA e lB e lC

]T
in which e lX = X3 − X2 is the direction of the passive joint

B =


{

$1 2

A O ;$
lA
O

}
0 0

0
{

$1 2

B O ;$
lB
O

}
0

0 0
{

$1 2

C O ;$
lC
O

}

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GTPR EXAMPLE

Rearranging:
A υ = B q̇

to:
υ = A−1Bq̇

where:
J = A−1B

so:
υ = Jq̇

Which gives the description of di�erential movement in the current
con�guration of the robot
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GTPR EXAMPLE
PLOTS
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GTPR EXAMPLE
PLOTS

(a) Joint positions

(b) Joint Velocities

Figure: GTPR Joint variables
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