

SAMI2021

Incremental Parameter Estimation of Stochastic State-Based Models

Robert Lipp, Guido Dartmann, Lejla Fazlic, Thomas Vollmer, Stefan Winter, Arne Peine, Lukas Martin and Anke Schmeink

Content

Model Learning in the Healthcare Sector

The Used Model: Stochastic Petri Nets

Proposed Algorithm

Simulation Results

Advantages through Machine Learning and Al Methods

- The healthcare sector is benefiting greatly from developments in AI and machine learning
- Whereas mathematical models previously had to be created by hand, nowadays they can be generated automatically
 on the basis of measured data
- These include models for . . .
 - risk stratification,
 - therapy guidance,
 - classification of patients,
 - and many more.

Challenges

- Methods for automatic learning of mathematical models usually need a large training dataset
- Especially in the medical field, however, such large data sets are rare
- The reasons are:
 - Sensitive privacy of patient data
 - High data protection requirements
 - Specifically in the EU: The European General Data Protection Regulation
- Probably the best-known database in the medical field that is freely accessible to researchers is MIMIC-III
- In available datasets, data often do not have the desired quality or quantity, or cohorts for specific applications are too small

Proposed Solution

- In this work, we present an algorithm that learns model parameters incrementally
- In this way, the algorithm does not require a large training database
- The mathematical model is trained incrementally with small data sets
- After training with a data set, only the model parameters are passed on and the training data remain securely

The Used Model: Stochastic Petri Nets

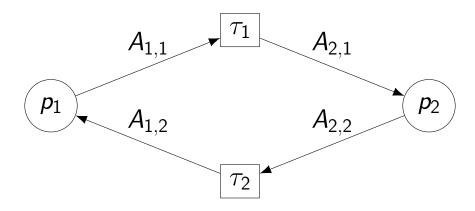
Content

Model Learning in the Healthcare Sector

The Used Model: Stochastic Petri Nets

Proposed Algorithm

Simulation Results



The Used Model: Stochastic Petri Nets

Stochastic Petri Nets

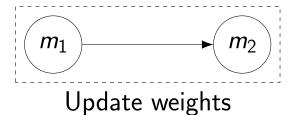
- Stochatic Petri Nets (SPNs) are very useful in systems biology and medicine
- The system is fully described by the firing rates of all transitions τ_1, τ_2, \ldots and the incidence matrix A
- In this work we reconstruct the matrix A from given data

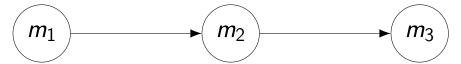
Content

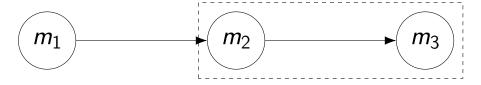
Model Learning in the Healthcare Sector

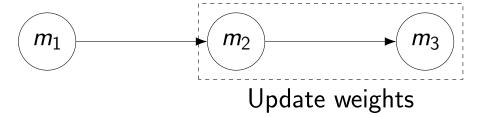
The Used Model: Stochastic Petri Nets

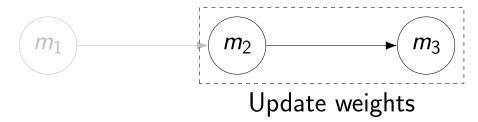
Proposed Algorithm

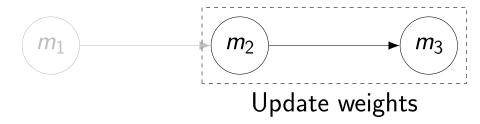

Simulation Results



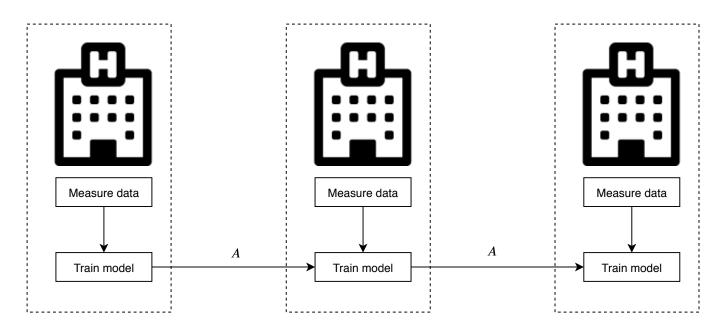








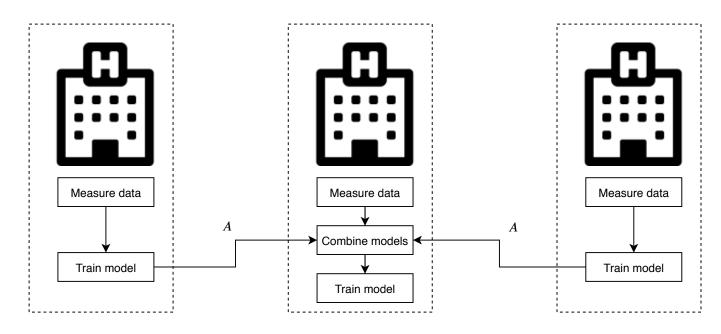
¹P. M. Vieting, R. C. de Lamare, L. Martin, G. Dartmann and A. Schmeink, "Likelihood-Based Adaptive Learning in Stochastic State-Based Models," in IEEE Signal Processing Letters, vol. 26, no. 7, pp. 1031-1035, July 2019, doi: 10.1109/LSP.2019.2917495.



- In each step only the pair (m_i, m_{i+1}) is required
- This incremental behavior is very useful

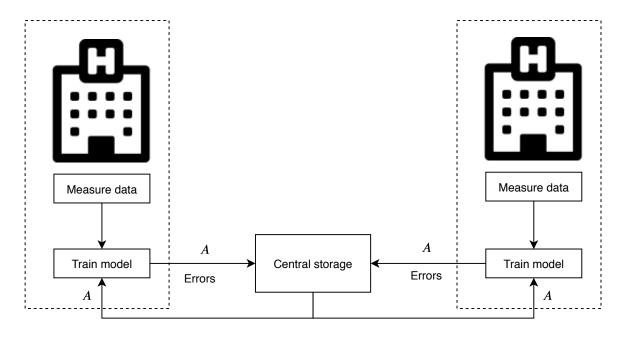
¹P. M. Vieting, R. C. de Lamare, L. Martin, G. Dartmann and A. Schmeink, "Likelihood-Based Adaptive Learning in Stochastic State-Based Models," in IEEE Signal Processing Letters, vol. 26, no. 7, pp. 1031-1035, July 2019, doi: 10.1109/LSP.2019.2917495.

Sequential Approach



- Pros: Data protection, privacy, no need for public database
- Cons: From which hospital should the model be requested? Danger of "double learning" Model could get worse

Sequential Approach with Parallel Operations



- Pros: No need to decide for one model, hospitals can train in parallel
- Cons: No version control, it may happen that the model gets trained with the same data over and over again

Sequential Approach with Central Storage

- Pros: Version control, quality of model can be observed, no accidental double-learning
- Cons: ?

Overview

- The incremental algorithm allows the learning of a model based on data from different hospitals while respecting data protection and anonymity
- The central storage can perform version control
- Anomaly detection could identify bad quality data sources

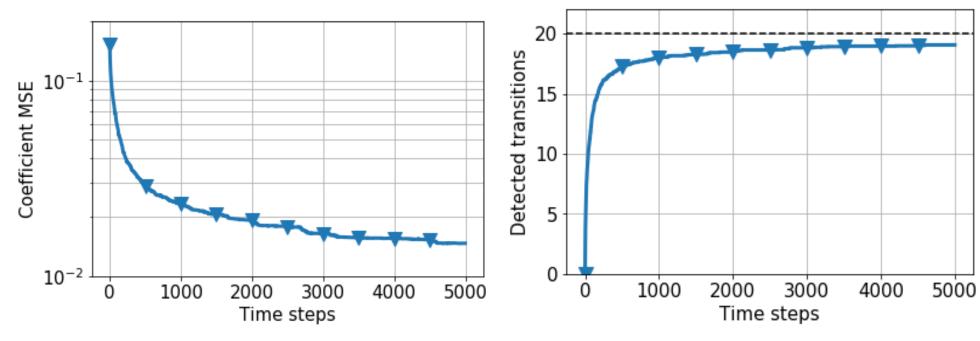
Content

Model Learning in the Healthcare Sector

The Used Model: Stochastic Petri Nets

Proposed Algorithm

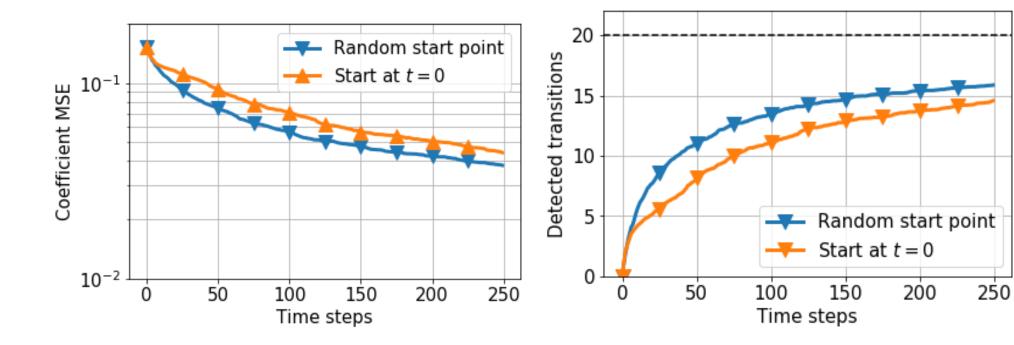
Simulation Results


Overview

In the following we present simulation results for the simulation of a gene regulatory network in 3 cases:

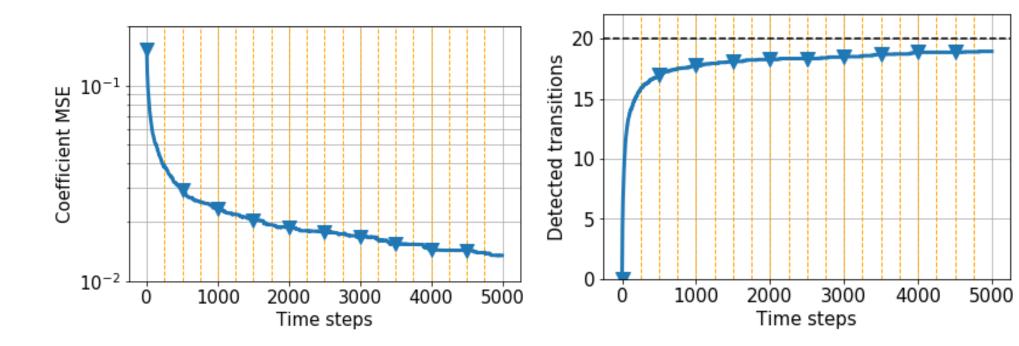
- 1. A sufficient amount of 5000 data points is available
- 2. An insufficient amount of 250 data points is available
- 3. 20 batches of 250 data points each are available

Case 1: Sufficient amount of data



Training with a sufficient amount of 5000 data points

Case 2: Insufficient amount of data



Training with an insufficient amount of 250 data points

Case 3: 20 batches of limited data

Incremental training with 20 batches of 250 data points each

Conclusion

Content

Model Learning in the Healthcare Sector

The Used Model: Stochastic Petri Nets

Proposed Algorithm

Simulation Results

- In this work, we have presented a method to recover the structural parameters of SPNs in an incremental way from measured data
- Our main contributions:
 - We have extended the LB-DAAGD algorithm² and adapted it for incremental applications,
 - we have developed several designs of the algorithm,
 - and we have shown through simulations that the most general version of our incremental algorithm performs as well as the algorithm that has a large database available.
- The learning algorithm is no longer dependent on large publicly accessible data sets.
- Future research:
 - Evaluating the algorithm with patient data measured in hospitals
 - Estimate the kinetic parameters of SPNs incrementally based on measured data

²P. M. Vieting, R. C. de Lamare, L. Martin, G. Dartmann and A. Schmeink, "Likelihood-Based Adaptive Learning in Stochastic State-Based Models," in IEEE Signal Processing Letters, vol. 26, no. 7, pp. 1031-1035, July 2019, doi: 10.1109/LSP.2019.2917495.

Thank you for your attention

Robert Lipp, Guido Dartmann, Lejla Fazlic, Thomas Vollmer, Stefan Winter, Arne Peine, Lukas Martin and Anke Schmeink

