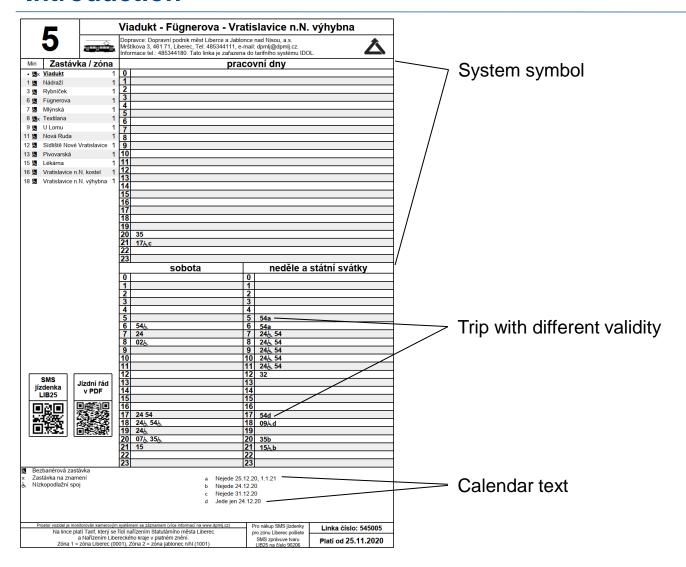
Algorithm for on-line calendar text generation in public transport

Kateřina Šulcová

Jaromír Šulc

Faculty of Transport Engineering
University of Pardubice, Czech republic



Outline

- Introduction
- System symbols
- User defined symbols
- Algorithm description
- Results of calendar text generation
- Conclusion

Introduction

Introduction

- CZE/SVK
 - Trips in public transport have many validity exceptions
 - Lot of calendar text needs to be generated
- Existing heuristic algorithm for train calendar text
 - Different requirements and environment compared to public transport
 - Unsuitable
- Existing set covering problem formulation
 - Can be solved to optimality
 - Very slow
- Design new heuristic for public transport
 - Handle more complicated exceptions, which are frequent
 - Handles user defined published symbols

System symbols

SYSTEM SYMBOLS IN CALENDAR TEXTS

Symbol	Meaning	
1	Mondays except holidays	
2	Tuesdays except holidays	
:	:	
7	Sundays except holidays	
х	Monday to Friday except holidays	
+	Holidays	

- Below we show expected calendar text for a set of two published symbols
 - "workdays"
 - "weekends + holidays"
- Situation: Trip validity is 5 without 31.12.
- Timetable: Trip is included in "workdays" only
- Calendar text: Operates 5, no service 31.12.

User defined symbols

EXAMPLES OF USER DEFINED SYMBOLS

Symbol	Meaning	Published title
1-5	Workdays	Workdays
1-4	Monday to Thursday	Monday to Thursday
6,7,+	Saturdays, Sundays, Holidays	Non-workdays
5-6*	Days before Saturdays, Sundays and Holidays	Before non-workdays
s	Serviced only in school days	School days
0	Serviced only in odd weeks	Odd weeks
e	Serviced only in even weeks	Even weeks

- Below we show expected calendar text for a set of two published symbols
 - "workdays"
 - "weekends + holidays"
- Situation: Trip validity is 1-4 with two additional Fridays, 20.4. and 18.5.
- Timetable: Trip is included in "workdays" only
- Calendar text: Operates only 1-4 and 20.4., 18.5.

Requirements

- Fast algorithm for on-line calendar text generation
- Calendar text does not usually contain a simple list of days, rather variations of shorter and more meaningful texts relevant to published symbols
- Calendar text convenience and user experience
- Possibility for user defined symbols and published symbols

Algorithm description

- For each published symbol and each trip within given time interval:
- 1. Use weekly mask
- 2. Do not consider days which are irrelevant considering published symbol
- 3. Identify patterns within rows
- 4. Identify patterns within columns
- 5. While possible, join patterns together
- 6. Create calendar text based on patterns
- 7. Create calendar text for exceptions not included within patterns

Algorithm description

- The algorithm is used for both
 - Positive text
 - = correspondence to *published symbol*, "operates on..."
 - Negative text
 - = exceptions against *published symbol*, "no service on..."
- Out of which is selected the shorter one and published

Results of calendar text generation

Indicator	Value
The number of unique trips in all lines and all	45,260
variants in the year	
The number of times a unique trip was presented	63,045
(as one trip is valid for multiple paternal sym-	
bols)	
The number of different calendar texts	426
The number of generated calendar texts into stop	11,218
timetable	
The number of generated calendar texts for other	37,581
consumers of data	
The average time of generating a calendar text	7 ms
The maximum time of generating a calendar text	17 ms

City of Liberec, 2019

Conclusion

- Fast heuristic algorithm for on-line calendar text generation
- Tested on real data within Czech republic
- Implemented in few information systems for passengers, journey planners, and as component of system MAGNUS, which is a complex software for planning and evaluation of public transport services

