

AUTOMATIC SEGMENTATION OF BRAIN TUMOR PARTS FROM MRI DATA USING A RANDOM FOREST CLASSIFIER

Szabolcs Csaholczi Levente Kovács László Szilágyi

Sapientia University of Transylvania, Romania Óbuda University, Budapest, Hungary

Motivation

- Why detect brain tumor?
 - 100k++ people die of brain tumor yearly
 - Early detection helps the survival
- Why is it useful?
 - There are not enough human experts
 - Automatic segmentation of brain tumor helps the diagnosis
 - Automatic segmentation of tumor parts helps therapy planning
 - Also useful in follow-up studies after intervention
- Random forest approach

Input Data

- Medical Image Computation and Computer Aided Interventions (MICCAI)
- Brain Tumor Segmentation Challenge (BraTS) since 2012
- BraTS train dataset 2015
 - 54 low-grade (LG) and 220 high-grade (HG) volumes
- Multispectral (T1, T2, T1C, FLAIR)
- 155 x 240 x 240 image volxels
- Ground truth (GT): negative, enhancing core, tumor core, edema
- Skull removed
- This study uses the HG volumes only, because LG contains no enhancing core

Difficulties

- Tumors have a great variety in
 - Size
 - Shape
 - Appearance
- Histograms need normalization
- Intensity inhomogeneity

Proposed Procedure

- Preprocessing
 - Histogram normalization
 - Feature generation
- Classification
 - Random forest
 - Four classes according to BraTS ground truth
 - No post processing, this time we are interested in the accuracy of the classifier
- Statistical evaluation
 - Accuracy indicators for whole tumor, enhancing core, tumor core, edema

Preprocessing

- Histogram normalization
 - Widely used method of Nyúl et al, works with a batch of MRI records
 - Aligns all histograms to the same milestones that have averaged positions
 - Our solution: context dependent linear transform
 - The 25 and 75 percentile values are transformed to some predefined constants
 - Coefficients of transform extracted from these two fixed point
 - Transform applied to all pixel intensities
 - New values cut at both limits of the predefined target interval

Feature generation

- 4 observed features (T1, T2, T1C, FLAIR)
- $4 \times 25 = 100$ computed features

Neighborhood	Average	Maximum	Minimum	Median	Gradient	Gabor	Total
$3 \times 3 \times 3$	4	4	4				12
3×3	4			4			8
5×5	4			4			8
7×7	4			4	16		24
9×9	4			4			8
11×11	4			4		32	40
Total	24	4	4	20	16	32	100

Random forest

- Python Scikit package
- Classification of individual pixels, 104 features
 - 4 classes according to ground truth
- Number of trees: 150
- Maximum depth: 18
- Train data size
 - 10k pixels from each train volume
- Half of the volumes used as train data, the other half as test data
 - These two halves took turns

Measuring accuracy

- Ground truth of record i: set of positives $\Gamma_i^{(\pi)}$ and set of negatives $\Gamma_i^{(\nu)}$
- Segmentation result of record i: set of positives $\Lambda_i^{(\pi)}$ and set of negatives $\Lambda_i^{(\nu)}$
- Accuracy indicators for each record
 - Sensitivity (true positive rate, TPR)
 - Specificity (true negative rate, TNR)
 - Dice score (DS)
 - Accuracy (ACC)
- Average of individual values
- Overall Dice score

$$\begin{aligned} \text{TPR}_i &= \frac{|\Gamma_i^{(\pi)} \cap \Lambda_i^{(\pi)}|}{|\Gamma_i^{(\pi)}|} \quad \text{TNR}_i &= \frac{|\Gamma_i^{(\nu)} \cap \Lambda_i^{(\nu)}|}{|\Gamma_i^{(\nu)}|} \\ \text{DS}_i &= \frac{2 \times |\Gamma_i^{(\pi)} \cap \Lambda_i^{(\pi)}|}{|\Gamma_i^{(\pi)}| + |\Lambda_i^{(\pi)}|} \\ \text{ACC}_i &= \frac{|\Gamma_i^{(\pi)} \cap \Lambda_i^{(\pi)}| + |\Gamma_i^{(\nu)} \cap \Lambda_i^{(\nu)}|}{|\Gamma_i^{(\pi)}| + |\Gamma_i^{(\nu)}|} \\ &\widetilde{\text{DS}} &= \frac{2 \times \left| \bigcup_{i=1}^{n_V} \Gamma_i^{(\pi)} \cap \bigcup_{i=1}^{n_V} \Lambda_i^{(\pi)} \right|}{\left| \bigcup_{i=1}^{n_V} \Gamma_i^{(\pi)} \right| + \left| \bigcup_{i=1}^{n_V} \Lambda_i^{(\pi)} \right|} \end{aligned}$$

Global accuracy indicators for various tissue types

Tissue type	Value	TPR	TNR	PPV	DSC
Whole	average	0.7234	0.9929	0.8734	0.7722
tumor	overall	0.7608	0.9929	0.8941	0.8221
Enhancing	average	0.6926	0.9972	0.7502	0.6728
core	overall	0.8060	0.9972	0.8065	0.8063
Tumor	average	0.5530	0.9970	0.8099	0.5654
core	overall	0.6554	0.9970	0.8508	0.7404
Edema	average	0.6374	0.9896	0.7231	0.6566
Lacina	overall	0.6843	0.9895	0.7651	0.7225

Individual Dice Scores for Various Tumor Parts

Individual Recall Values for Various Tumor Parts

Individual Precision Values for Various Tumor Parts

Detected whole tumors: TP FP FN

Conclusions

- As preliminary result the achieved accuracy is promising
- Fine tuning and post processing will improve accuracy

- Future:
 - CNN + deep learning methods

Acknowledgement

- Sapientia Institute for Research Programs
- European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (grant agreement No 679681)
- Hungarian Academy of Sciences through the János Bolyai Fellowship program
- ÚNKP 20-5 New National Excellence Program of the Ministry of Human Capacities of Hungary